
NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A274 957

DTIC "'=.°":

S JAN 2, 7 1994S A ,"THESIS

OBJECT-ORIENTED IMPLEMENTATION OF FIELD
ARTILLERY TACTICAL DATA SYSTEM

by

Mustafa Eser

September 1993

Thesis Advisor. C. Thomas Wu

Approved for public release; distribution is unlimited.

94-02775

1h,111k11,611111 ~, (11i, po-o

Best
Available

Copy

UNCLASSIFIED
SECURITY CULAIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIFICATION UNCLASSIFIED lb. REHTI5CTINE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY 3DlIBTIcN/AVLABILITY OF REPORT
2b. DECLASSIFICATIONMDOWNGRADING SCHEDULE Approved for public release;

distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF ITORING ORGANIZATION
Computer Science Dept. (itf apife) Naval Postgraduate School
Naval Postgraduate School CS
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, Steae, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK IUNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Secutity Classification)

OBJECT-ORIENTED IMPLEMENTATION OF FIELD ARTILLERY TACTICAL DATA SYSTEM (U)

12. PERSONAL AUTHOR(S)
Eser, Mustafa
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGECOU6T

Master's Thesis FROM 09/92 To 09/93 1993, August 26 162
16. SUPPLEMENTARY NOTATION The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the United States Government.
17. COSATI CODES 18. SUBJECT TERMS (Continue on rover if necessary and identify by block number)

FIELD GROUP SUB-GROUP Field Artillery Tactical Data System, Object-Orieted Programming, Object-
Oriented Database Management System

19. ABSTRACT (Continue on reverse if necessary and identiy by block number)
The U.S. Army lacks a single automated fire support system. The goal of Army's ongoing project of Advanced

Field Artillery Tactical Data System (AFATDS) is to integrate all of its fire power under a single automated system
to provide an efficient fire support in the battlefield. AFATDS is being implemented using the language ADA for
battalion and above level. The problem for this research is to implement AFATDS for battalion (just for technical fire
direction) level and below. In addition, we want to add a Graphical User Interface (GUI), use modem software
engineering principles and add multitasking.

The approach taken was to apply object-oriented paradigm for the design and development of the battery level
of AFATDS using Microsoft Windows' operating environment which provides (non-preemptive) multitasking and a
GUI, and Borland C++ as the development tool.

The results are as follows: The battery level software of AFATDS is implemented. The GUI provided a better
interface which facilitates easier training [Ref. 17]. Multitasking allowed multiple firing missions to execute
concurrently which was not possible with BCS. Object-oriented features of Borland C++ provided 60% improvement
for GUI development than traditional programming languages.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

BUNCLASSIFIED/UNLIMITED [SAME AS RPT. [DTIC USERS UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

C. Thomas Wu (408) 646-3391 CS/Wq
DD FORM 1473,84 MAR 83 APR edlion may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete UNCLASSIFIED
i

Approved for public release; distribution is unlimited

Object-Oriented Implementation of Field Artillery Tactical Data System

by
Mustafa Eser

First Lieutenant, Turkish Army
B.S., Turkish Land War Acedemy, 1987

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

Author: _
~Musta)Ws-er

Approved By: __
Dr. C. Thomas W 6t. esis Advisor

Dr. David K. Hsiao, Second Reader

Prof. Ted Lewis, Chairman,
Department of Computer Science

ii

ABSTRACT

The U.S. Army lacks a single automated fire support system. The goal of Army's

ongoing project of Advanced Field Artillery Tactical Data System (AFATDS) is to

integrate all of its fire power under a single automated system to provide an efficient fire

support in the battlefield. AFATDS is being implemented using the language ADA for

battalion and above level. The problem for this research is to implement AFATDS for

battalion (just for technical fire direction) level and below. In addition, we want to add a

Graphical User Interface (GUI), use modem software engineering principles and add

multitasking.

The approach taken was to apply object-oriented paradigm for the design and

development of the battery level of AFATDS using Microsoft Windows' operating

environment which provides (non-preemptive) multitasking and a GUI, and Borland C++

as the development tool.

The results are as follows: The battery level software of AFATDS is implemented. The

GUI provided a better interface which facilitates easier training [Ref. 17]. Multitasking

allowed multiple firing missions to execute concurrently which was not possible with BCS.

Object-oriented features of Borland C++ provided 60% improvement for GUI development

than traditional programming languages.

Acceý_icr F,-r

NTIS

DTI'O Qui• JTi upcTD Da MiL, .i

U,"c

..

111ozLI
iiBy

TABLE OF CONTENTS

I. INTRO D U CTIO N .. 1

A. BACKGROUND .. 1
1. Advanced Field Artillery Tactical Data System 2
2. Battery Computer System .. 4
3. Motivation for Object-Oriented Approach .. 4

B. OBJECTIVES .. 4
C. ORGANIZATION ... 4

II. THE PROGRAMMING ENVIRONMENT, LANGUAGE AND
APPLICAITON DEVELOPMENT TOOLS FOR FATDS 6

A. PROGRAMMING ENVIRONMENT ... 6
1. Hardware Basics .. 7
2. Windows Basics ... 7

a. The G U I ... 8
b. Event-Driven Applications ... 9
c. M ultitasking .. 9
d. Device Independence .. 9
e. Elements of a Windows Application ... 10
f. Dynamic Link Libraries (DLL) .. 10

B. PROGRAMMING LANGUAGE ... 11

C. APPLICATION DEVELOPMENT TOOLS ... 12
1. Application Development tools ... 12
2. Language .. 12

Ill. OBJECT-ORIENTED PROGRAMMING DESIGN OF FATDS 13

A. INTRODUCTION ... 13
1. Coad and Yourdon OOA ! 13
2. Booch O O D .. 14
3. My OOA and OOD Strategy .. 14
4. Naming Conventions 16

B. A NA LY SIS ... 17
1. FATDS System Requirements .. 17
2. Defining the Boundaries of the Problem ... 20
3. Defining the Objects and Classes ... 22
4. Define Subject Areas ... 23

C. GRAPHICAL USER INTERFACE DESIGN 23
1. Design Considerations .. 23

a. The U ser .. 23
b. Consistency .. 24

iv

c. Screen-Layout Issues .. 24
d. Customizing .. 24
e. Input and Output Devices .. 24
f. On-Line help and Tutorials .. 24
g. Error Handling ... 25

2. OFire ... 25
3. OChart ... 25

D. OBJECT-ORIENTED DESIGN (OOD) .. 25
1. Identify Classes and Objects and Their Semantics 25

a. The Classes for OFire .. 25
b. The ,Classes for OChart ... 26

2. Identify Relationship Between Classes and Objects 27
3. Implement Classes and Objects .. 28

E. FILE ORGANIZATION .. 29
1. File Organization for C++ Windows Programming 29
2. FATDS's File Organization ... 32

F. DESIGN DECISIONS FOR DLLs .. 34

G. INITIALIZATION FILES .. 34

IV. COMPARISON OF OBJECT-ORIENTED VS. CONVENTIONAL
PROGRAM M ING PERFORMANCES ... 36

A. INTRODUCTION ... 36

B. COM PARISON CRITERIAS ... 36
1. M odifiability ... 36

a. Encapsulation ... 37
b. Inheritance ... 37
c. Polymorphism (dynamic binding) .. 38

2. Effi ciency .. 40
3. Reliability .. 40
4. Understandability : 40
5. Code Size and Cost .. 41
6. Portability .. 42
7. Project M anagement .. 42

a. Project Organization ... 43

V. DATABASE MANAGEMENT SYSTEM (DBMS) SELECTION FOR
FATDS .. 46

A. INTRODUCTION ... 46

B. CHOOSING A DBM S SOURCE ... 46
1. Programming language's own DBM S .. 46
2. Application Developers's own DBM S .. 47
3. Commercially available DBM S .. 47

V

4. Choosing the DBMS Source for FATDS .. 48

C. CHOOSING A DATABASE MODEL ... 48
1. Database Model Options .. 48
2. Interfacing Objects with the Other Models ... 50
3. Choosing a Data Model for FATDS .. 50

D. DBMS FOR FATDS .. 52

VI. OBJECT-ORIENTED DATABASE DESIGN OF FATDS 55

A. INTRODUCTION ... 55
B. DATABASE REQUIREMENTS AND ANALYSIS OF FATDS 56

1. The Role of Artillery ... 56
2. Application Functional Requirements Overview 57

a. Target Management .. 57
b. Gun management ... 58
c. Firing Table Management .. 58

C. DATABASE DESIGN OF FATDS .. 59
1. Conceptual Design ... 59
2. Identify Classes, Attributes and Services .. 59
3. Database Implementation ... 63

a. Paradox Database Tables Organization 63
b. Database File Organization ... 64

VII. CONCLUSION AND FUTURE WORKS ON FATDS 67

A. SUMMARY AND CONCLUSIONS ... 67

B. FUTURE WORK ... 68

APPENDIX A. (OFIRE HEADER FILES LISTINGS) ... 70

A. I BURSTS.H header file ... 70
A.2 BUTION2.H header file # 72
A.3 COMMAND.H header file .. 73
A.4 FIRE.H header file ... 77
A.5 GLOBALS.H header file ... 85
A.6 REPORT.H header file .. 88
A.7 SELECT.H header file .. 90

APPENDIX B. (OCHART HEADER FILES LISTINGS) .. 92

B. I ABSLIST.H header file .. 92
B.2 CHART.H header file .. 94
B.3 DEFINES.H header file .. 100
B.4 GEN2LIST.H header file ... 102
B.5 GLOBALS.H header file ... 105
B.6 GUNDB.H header file ... 107

vi

B.7 INFO.H header file .. 112
B.8 TARGETDB.H header file .. 117

APPENDIX C. (DATABASE HEADER FILES LISTINGS) 121

C.1 DBGUN.H header file ... 121
C.2 DBTARGET.H header file .. 123
C.3 DBTBL_F.H header file .. 125
C.4 PARADOX.H header file ... 126
C.5 PDOXENG.H header file .. 127
C.6 PDOXREC.H header file ... 128
C.7 PDOXTAB.H header file ... 129

APPENDIX D. (SCREENS OF APPLICATIONS) .. 132

LIST OF REFERENCES .. 146

INITIAL DISTRIBUTION LIST ... 148

vii

LIST OF TABLES

Table 1. SYSTEM REQUIREMENTS OF 0-0 FATDS .. 7

Table 2. EMBEDDED CODES FOR NAMING ... 17

Table 3. DATA MEMBERS WHICH ARE USED BY ALL THE DATABASE
CLA SSES . .. 59

Table 4. MEMBER FUNCTION WHICH ARE USED BY ALL OF THE
DATABASE CLASSES .. 62

Table 5. MEMBER FUNCTION WHICH ARE MOSTLY USED BY SOME OF
THE DATABASE CLASSES ... 63

Table 6. PARADOX FIELD TYPES .. 64

viii

LIST OF FIGURES

Figure 1. Model-based project development cycle for 0-0 FATDS 16
Figure 2. Block diagram for Field Artillery Tactical Data System / FS 18
Figure 3. The block diagram for FATDS / FS at Battery level 20
Figure 4. The block diagram for battery fire direction system 21
Figure 5. Class hierarchy for OFire (i) ... 28
Figure 6. Class hierarchy for OFire (ii) ... 29
Figure 7. C++ development file organization for Windows environment 30
Figure 8. File organization of FATDS / FS (ofire) .. 32
Figure 9. File organization of FATDS / FS (ochart) .. 33
Figure 10. Selective includes of a sample Borland C++ header file 42
Figure 11. Time allocation for development elements ... 43
Figure 12. Object development in MBPDC ... 44
Figure 13. Object-interfaced data environment ... 53
Figure 14. ER diagram for FATDS/FS schema (gun, target, munition) 60
Figure 15. ER diagram for FATDS/FS schema (Table F) .. 61
Figure 16. Database development file organization ... 66

ix

TABLE OF ABBREVIATIONS

AFATDS ... Advanced Field Artillery Tactical Data System

A CC S ... A rm y Com m and and Control System

A PI .. A pplication Interface

BC S .. Battery Com puter System

BLO Bs .. Binary Large O bjects

D BM S .. D atabase M anagem ent System

D LL ... D ynam ic Link Library

D PM I ... D O S Protected-M ode Interface

FA .. Field A rtillery

FATD S .. Field A rtillery Tactical D ata System

FD C ... Fire D irection Center

FDO .. Fire D irection O fficer

FFE .. Fire for Effect

FS ... Fire Support

G D I .. G raphics D evice Interface

G U I .. G raphical U ser Interface

ID E .. Integrated D evelopm ent Environm ent

LO C .. Line of Code

M BPD C .. M od el-Based Project D evelopm ent Cycle

M TO .. M essage To O bserver

0 -0 .. O bject-O riented

O O A .. O bject-O riented A nalysis

O O D .. O bject-O riented D esign

O O D A ... O bject-O riented Dom ain A nalysis

OODBMS ... Object-Oriented Database Management System

O O L .. O bject-Oriented Language

'C

OO P .. O bject-O riented Program m ing

OO RA ... O bject-O riented Requirem ent A nalysis

ROF .. Re• ord of Fire

TOT .. Tim e -on-Target

xi

ACKNOWLEDMENTS

I would like to thank Dr. Wu for introducing me to the Object-Oriented paradigm, I LT

Cince (Turkish Army) for contributions with his discussions and experiences on my

program & interface design, ILT Ozen (Turkish Army) for providing me technical

documents and CPT Freeman (US Army) for his precious help for providing materials of

fire direction.

Particularly I would like to thank my fiancee, Zeliha, for her inspirational support

which helped me to finish this thesis on-time.

xii

L INTRODUCTION

A. BACKGROUND

The mission of artillery is to provide and coordinate devastating fires, giving the

maneuver commander the overwhelming combat power to win decisively and quickly

anywhere and any time. Modem artillery has improved its effectiveness using new

technologies with weapon and C3I systems.

Technology developments, productivity, and battlefield concepts always force C3I

components to work in an integrated environment to attain victory in the warfare. The

current leading field artillery tactical automated system essentially based on TACFIREs/

LTACFIREs which are battalion level systems. The sub-systems of a TACFIRE/

LTACFIRE are Battery Computer Systems (BCSs) and various interfaces. It is an isolated

system from other automated systems and services. Next step is to integrate all the tactical

data systems of the army, namely Army Command and Control System (ACCS). Field

Artillery Tactical Data System will be the subsystem of ACCS.

Advanced Field Artillery Tactical Data System (AFATDS) which is an ongoing

project being a sub system of ACCS is aimed to realize artillery portion of the integration.

Since AFATDS had not been fielded yet, the concept of FATDS is preferred for the same

scope of AFATDS for this thesis research. This integration will provide:

"* Centralized database which aims dumping databases to other computers to provide
backup, exchanging data between relevant nodes and reducing data redundancy.

"* Faster fire support.

"* Saving resources.

Field Artillery Tactical Data System (FATDS) is composed of several layers and

independent interfaces. Layers are:

"* Battery level

"* Battalion level

1I

"• Corps level

Interfaces are:

"* Digital message devices

"* Screens

No matter how modem armies prepare themselves for future conflicts, there will be

always surprises and unconditional requirements. Reprogrammability of automated

systems provides flexibility to new requirements of a battlefield. At this point software part

of automated systems needs programming paradigms which provide high degree of

software engineering goals which are: [Ref.21: p.65]

"* Modifiability: The software system should be easily modifiable without causing other
errors or complexity.

"* Efficiency: The software system should operate using the set of available resources,
which are time and space, in an optimal manner.

"* Reliability: The software system should operate for long periods of time without human
intervention.

"• Understandability: It is essential for modification and project management because of
the need for coordi"ation.

In addition to those goals software developers have been experimenting with various

methodologies to achieve some of the following goals: [Ref.18: p.16]

"* Precise specification of the design.
"* Shorter code development phase.
"* Easier development of code.

"* Reusability of code.

1. Advanced Field Artillery Tactical Data System

AFATDS is an ongoing project for total fire support system for U.S. Army, with

its fielding in FY'95. AFATDS will align targets with fire units and munitions and help

manage survey and meteorological operations, movement and positioning and process of

managing logistics. AFATDS will take into account all available fire support means, to

include attack helicopters, tactical air, naval gunfire and offensive electronic warfare. It

will employ sophisticated routines to recommend the right systems for the targets under

2

analysis and facilitate the synergistic integration of efforts. The heart of AFATDS'

development is software.

The heart of AFATDS' development has been the software. The first step in the
AFATDS program was to establish the command and control functions of the fire
support system, a detailed analysis that identified the inputs, the processes and the
outputs. The results of this analysis have driven the AFATDS software. [Ref.23: p.39]

Major advantages of AFATDS in terms of software and hardware are seen as:

[Ref.23: p.39-4 1]

"* Easy upgrades
"• No more Mutual Support Units (MSUs)

"* Comprehensive Functionality

"* Interoperability
"* No AFATDS military occupational speciality (MOS) necessary

"• Common hardware Army-wide
"* Large screen display
"* No more dedicated shelters

"* Fire Support Elements (FSEs) linked from battalion through corps
* Lab-Top computers for Fire Support Officers (FSOs) and commanders

A key aspect of AFATDS software will be its interoperability. As a component of

ACCS, AFATDS will interface with maneuver, intelligence, air defence and combat

service support systems. It is also being designed to interface with the Air Force and Marine

automated systems and with the German (Adler) and British (BATES) systems. These

interfaces will significantly enhance the total integration of the joint and combined team.

[Ref.23: p.40]

AFATDS has a distributed database architecture. The database of each AFATDS

node will be maintained continually with the latest information.

To maintain a full integration, portability and easy maintenance, AFATDS is

using DoD's standard programming language, ADA. AFATDS is conceptually evaluated

3

in 1989 and scheduled to be completed in FY'93 with fielding to the total force scheduled

for FY'95.

2. Battery Computer System

BCS is defined as follows:

An automated data processing system located in the firing battery. It consist of three
major components: the battery computer unit, the power distribution unit, and I to 12
gun display units. It is used to compute accurate firing data and as digital
communications interface. [Ref. 10: Glossary-2]

3. Motivation for Object-Oriented Approach

My motivation for 0-0 approach in general:

"* Object-oriented approaches encourages the use of modern software engineering
technology.

"• Object-oriented approaches promote and facilitate software reusability.
"• Object-oriented approaches facilitate interoperability.
"* When done well, object-oriented approaches produce solution which closely resemble

the original problem.
"• When done well, object-oriented approaches result in software which is easily

modified, extended, and maintained.

"* Object-orientation improves traceability.
"* Object-orientation improves the conceptual integrity of both the process and the

product.

B. OBJECTIVES

The objective of this thesis is to create the battery level software of Field Artillery

Tactical Data System analyzing the benefits of object-oriented implementation of both

programming and database of the project in an environment which provides multitasking

and graphical user interface.

C. ORGANIZATION

Chapters are organized into two groups: Programming language and database. Chapter

II evaluates Object-Oriented Programming development languages and tools briefly.

4

Chapter MII addresses the design features of programming phase. Chapter IV is a

comparison of the Object-Oriented language implementation of subject vs. conventional

programming languages. Chapter V evaluates the possible database management options

for FATDS. Chapter VI addresses the design of the selected database management option.

Conclusions and future works on FATDS are summarized in Chapter VII.

IL THE PROGRAMMING ENVIRONMENT, LANGUAGE AND APPLICAITON
DEVELOPMENT TOOLS FOR FATDS

The concept of Object-Orientation may not give any idea about its performance over

other paradigms without considering programming environment, language and application

development tools.' For this research I have chosen PC-based Microsoft Windows 3.1 as

the programming environment, C++ as the Object-Oriented Language (OOL), and Borland

C++ & Application Framework as the application development tools. Since the purpose of

this research is to focus on the programming performance benefits of object-oriented

implementation, the best selection of those elements is not discussed.

Object-Oriented Design (OOD) and Object-Oriented Analysis (OOA) of FATDS will

be discussed on the next chapter. Following sections discuss the characteristic of the

selected elements.

A. PROGRAMMING ENVIRONMENT

When it comes to portability issue of a software, there are questions to be answered

about programming environment. What will the application be used for? What kind of

terminals will be used? Who will be the users? Which operating system will the application

work on? What kind of devices will the application work with? Will the application work

stand-alone or in networked environment? Does the application have to work with

heterogenous subsystems in an network? There are many questions that a programmer

faces with. I have taken PCs as the main hardware unit. Table 1 displays the system

requirements of the 0-0 FATDS. The reasons for selections this environment are:

In addition to technologic developments, economical and administrative obligations
makes all the uniform systems heterogenous. Especially huge systems do not tend to
keep themselves uniform. PCs are unique examples to represent the variety of users,
hardwares and software. Though its heterogeneous structure creates some problems -
like training, hardware, software maintenance, either single or in a networked media

1. When an object-oriented system is under constucion, the architecture is foremost in impor-
tance, just as it is in all other engineering disciplines. The development process is adapted to the
architecture, and the tools are adapted to the process. [Ref.15: p.26]

6

PCs are forcing companies to pay more attention to them. PCs word is developing with
its new features and object-orientation is claimed for being familiar with these
complexity.

"* PCs are more available computers to ordinary people. This means more people are
familiar with PCs (which is important from the user's train point of view) and there are
sophisticated application tools for PCs too.

"• Its software and hardware are more economical than work stations.
"* This selection satisfies the objective of this research.

TABLE 1: SYSTEM REQUIREMENTS OF 0-0 FATDS

Applicatlon Appication
evaipn~en ltmin dV inontoptimaI

CPU IBM-386 IBM-486

Display VGA, 2 color SVGA, 256 color

Sound - -

Operation System MS-DOS 5.0 & MS- MS-DOS 5.0 & MS-
Windows 3.1 Windows 3.1

Memory 2 MB RAM 8 MB RAM

Hard Disk Space 80 MB 120 MB

1. Hardware Basics

Hardware capabilities may boost the performance of the application, but there is

no direct relation with the programming style for this research. Board, CPU, caching,
8

display and other I/O devices have direct relations with either operating system or

application requirements.

2. Windows Basics

The general structure of Windows programming naturally fits the OOP style.

Everything on the screen is defined as a window, because each object has to have some

common features. Each window inherits some of its features from other windows and add

some specific ones. The data goes with a window is encapsulated into the window object.

7

Window objects are polymorphic, they can all receive common messages and take action

that is appropriate for that window. [Ref.25: p.4]

a. The GUI

Does a user, who is supposed to use a computer, have to learn what the

computer is? Or, should the computer be designed regarding a specified user group?

Practically both questions have positive answers. Needs and technology determine each of

its ratio in an application.

Most computer users are familiar with Windows' GUI and all Windows

applications have consistent interface. Consistency is one of the important factors which

helps a user to adopt a new application in shorter time.

Though every environment provides different GUI in different degrees of

graphicism Windows provides all the basic GUI tools. These are the most common

graphical elements:

"* Icons

"• Fonts and text formatting
"* Charts and graphics

"* Menus

One of the graphical elements of Windows Application Interface (API) is

controls which represents an event or information source for events. Controls are mainly

used for user input. The leading feature of controls is to make the user remember some

information but not to memorize for recalling. The controls are:

"• Buttons
"• Check boxes
"* Combo boxes
"• Static/dynamic edit fields
"• Radio buttons
"* Custom controls

There are high level graphical elements too:

"* Drag-and-drop mechanism

"* Hot spots in text or graphics to do something when selected.

8

Those were the just the elements of Windows GUI. The problem is to produce

something that the user will understand and use it easily.

b. Event-Driven Applications

The only communication link between a user and a terminal is Input / Output

(I/O) actions. Procedural interfaces provide I/O in either command line or question-and-

answer form. In either case, the application gets some input, goes off to process it, and

produces output. The application is the boss, and the user acts as an intelligent database

server. Menu-driven applications takes some database burden of the user. [Ref. 17: p.39]

Event-driven applications act on events coming from a variety of sources.

The events may come from controls that the user can activate, from other programs, or from

devices such as the clock or communications port.

Event-driven applications are not specific only to Windows, but almost all

Windows applications are based on this style. Event-driven programming brings a different

approach to the design and implementation of an application. Events leads the way, so

establishing a GUI generally is the first phase of implementation. Just a GUI, without a real

code behind it, serves as a prototype of the application. This eliminates other third party

tools for rapid code prototyping.

c. Multitasking

Windows 3.1 provides a non-preemptive multitasking ehvironment. This

feature is one of the key factor for the end-user. The user can run more than one application

simultaneously.

d. Device Independence

This feature is important for both user and programmer. The device

dependency is hidden away in the Windows' Graphics Device Interface (GDI) and deice

drivers that are either bundled with the retail Windows or supplied by the device

9

manufacturer. Windows program developers can ignore about devices, they know that their

application will work with all the devices that are introduced to Windows.

For programmers in non-Windows environment, program output can be the most
challenging task of the entire application. Idiosyncrasies of a wide variety of devices
must be discovered, resolved, and properly handled in the code. For small developers,
just obtaining the necessary manuals and use of devices for testing can prohibitively
expensive Under Windows, all these problems simply goes away.[Ref. 19: p.78]

e. Elements of a Windows Application

A typical Windows applications has these elements: A main window contains

a title bar, menu and a client area. The client area serves as a canvas that the application can

draw on. Main window may have child windows. Child window looks sometimes as a

control or sometimes another client region.)ialog boxes are for either information display

or input purposes. Dialog boxes contain a number of controls, such as buttons, radio boxes,

etc.

f. Dynamic Link Libraries (DLL)

DLLs are one of the advanced features of Windows. Normally most functions

have beer. statically linked to applications. When a library or object code is used the

executable versions of the functions contained in the code are brought in to executable file.

[Ref.20: p.48] Since this is a static linking, multiple versions of the same function may exist

in the executable file. Any modification on the library functions require relinking of the

application. So the whole application is replaced.

Dynamic linking occurs at run-time. Application is just introduced to the

function and in which. DLL file its implementation is placed. The executable file does not

carry the object code. When the executing program makes a call to a dynamic link function,

Windows checks to see whether the function is already in memory. If it is in memory

Windows increases the in-use counter for this library by one and passes execution to the

new memory location. If the function is not already in memory, Windows tries to find a file,

10

with a .DLL extension, that contains the desired function. Windows then loads the function

into memory. [Ref.20: p.49]

The only disadvantage of DLLs is that .DLL files should be ported with the

application while the advantages of DLLs are:

"* Downsize the executable code size and compile-link time. E.g., OFIRE.EXE file was
more than 400K Ion before using .DLLs, and it become almost 150K long executable
file.

"* Provide the application to run on computers that have a limited amount of memory.
"• Ease the maintenance of the code. When a DLL file is updated, it is enough to replace

that .DLL file without linking the whole code.
"* Make interchangeable modules.[Ref.25: p.66]

B. PROGRAMMING LANGUAGE

I have selected C++ as an OOPL. It is not the only OOPL, but it is one of the OOPLs

that supports all the 0-0 features. One of the leading reasons which makes me select C++

is its commercially availability.

For better or worse, the real winner today is C++, which attracts large groups of
programmers at the largest companies and is used on thousands of projects in industry.
[Ref. 15: p.261

Stroustrup lists the language features of C++ as:

"* C-based, object-oriented extension of C.
"* Class concept and class-based object-oriented paradigm.
"* Data abstraction and data encapsulation facilities.
"* Mechanism for data abstraction hierarchies.
"* Strongly typed.
"* Function and operator overloading.
"* User-controlled memory management.
"• Facilities modeling multiple inheritance.
"* Support polymorphism.
"* Type-safe linkages.
"• Abstract classes.
"• Exception handling mechanism.
"* Used for general purpose applications as well as simulations development.

11

• Can be use to model conceptual solutions.

C. APPLICATION DEVELOPMENT TOOLS

Borland provides all the tools that is necessary to produce Windows programs.

1. Application Development tools

Borland C++ 3.1 and Application Framework has the following tools:

"• An ANSI C and C++ global optimizing compiler

"* A DOS protected-mode interface (DPMI) compiler and programmer's platform

"• A Windows-base integrated development environment (IDE)

"* A graphical source browser (ObjectBrowser)

"• A utility for tracking Windows messages (WinSight)

"* A debugger for DOS and Windows applications (Turbo debugger)

"• A profiler for DOS and Windows (Turbo Profiler)
"• The Turbo Assembler

"* The Resource Workshop

"* A library of C++ classes to simplify Windows application development
(ObjectWindows)

"• The EasyWin library for porting DOS programs to Windows

"* The Turbo Vission application framework for DOS applications

"• Source code to the runtime library

2. Language

Borland compiler runs in protected mode, so large programs and libraries do not

require extensive swapping. Precompiled header are supported. Because the headers for

Windows programs tend to be quite large (windows.h alone is over 120K), this Borland

C++ feature can increase compile times by a factor of ten.[Ref. 19: I..xviii][Ref.25: p.5]

Borland IDE editor provides to open multifiles simultaneously as well as large

files.

12

M. OBJECT-ORIENTED PROGRAMMING DESIGN OF FATDS

A. INTRODUCTION

Object-oriented programming should follow Object-Oriented Analysis (OOA) and

Object-Oriented Design (OOD). Though 0-0 paradigm goes back two decades, OOA and

OOD methodologies are not mature enough. [Ref. 14: p.22] Discussions are still continuing

about a perfect methodology for both OOA and OOD. The goal of OOA is still the same:

the development of an accurate and complete representation of the problem domain.

[Ref.14: p.2 61 The problem is that there is no standard OOA methodology. I have selected

Coad & Yourdon OOA [Ref.6] and Booch OOD [Ref.4] to build basis for 0-0

methodologies of this research.

1. Coad and Yourdon OOA

This model defines the problem domain in five consecutive steps where each step

builds on the previous step. The steps are: [Ref. 14: p.27]

" Define objects and classes: Look for structures, other systems, devices, events, roles,
operational procedures, sites, and organizational units.

" Define structures: Look for relationship between classes and represent them as either
general-to-specific structures.

" Define subject areas: Examine top level objectives within whole-to-part hierarchies and
mark these as candidate subject areas. Refine subject areas to minimize
interdependencies between subjects.

" Define attributes: Identify the atomic characteristics of objects as attributes of the
object. Also look for associative relationships between objects and determine the
cardinality of those relationships.

" Define services: For each class and object, identify all the services it performs, either
on its own behalf orfor the benefit of other classes and objects.

Coad and Yourdon uses the following tools for OOA:

"* Class and object diagram
"• Object state diagram

"• Service chart

13

2. Booch OOD

Booch is the pioneer of OOD. Booch's methodology was originally ADA

language specific, but he adopted his methodology to 0-0 completely. He recommends not

a specific ordering of analysis plus design phases. The strategy should be "analyze a little,

design a little" [Ref.4: p.201]. Because there is no certain border between analysis and

design of a problem to jump from one to another. Design process should be worked with

iteratively and incrementally, augmenting formal diagrams with informal techniques

appropriate to the problem at hand. Booch's four major design steps are [Ref. 14: p.32]:

"• Identify classes and objects: Identify key abstractions in the problem space and label
them as candidate classes and objects.

"• Identify the semantics of classes and objects: Establish the meaning of the classes and
objects identified in the previous step using a variety of techniques, including creating
"scripts" that define the life cycles of each object from creation to destruction.

"* Identify relationships between classes and objects: Establish class and object
interactions, such as patterns of inheritance among classes and pattern of cooperation
among classes and patterns of cooperation among objects. This step also captures
visibility decisions among classes and objects.

"* Implement classes and objects: Construct detailed internal views of classes and objects,
including definitions of their of their various behaviors (services). Also, allocate
objects and classes to modules.

Booch uses the following tools for OOD:

"• Class diagrams and class templates
- Object diagrams and timing diagrams
"• state-transitions diagrams

"• operation templates
"• module diagrams and templates
"* process diagrams and templates

3. My OOA and OOD Strategy

As it is indicated above I carried out analysis and design together. The reasons are:

"* There is no distinct border between analysis and design. Switching to design to late may
cause waste of resources while switching too early may cause not to identify the
problem. It is more flexible to do them together.

"* The design may not reflect the capabilities of the system environment or the
requirements of the user completely. Instead of using external software prototyping

14

tools, GUI-based prototyping which could be performed at various steps of system
development, provides realistic and early evolution of the design. Each time after
receiving feed-backs from the consumer, it could be necessary to modify the analysis
again.

" There are diverse design options for the project. Not all the design options are derived
from the analysis. At a point in the project it would be necessary to modify the design
and the analysis process as well.

"* There may appear some constraints and force to change to alternate designs. E.g., size
of code may force the system hardware's memory limitations.

Above conditions are valid not only for 0-0 methodologies, but also for non-

object-oriented ones. After evolution of a system, if a modification is required, then it will

be necessary:

"• To add a/some new part(s) into the system and/or,
"* To throw away a/some part(s) of the system and/or,
"* To modify a/some part(s) of the system

Object-oriented systems adds another option for creation or modification of a

system: Reuse. At the beginning of a large project development or on small projects the role

of reusing may not be so important, but during the development of phase and for large

scaled projects reusing begins to save resources. Assuming that old components of the

system are well tested, other objects which are created by inheriting those old objects are

most likely be trusted objects. It will take shorter time to test new objects.

First product after a brief analysis was the GUI of the project. The design of GUI

is an application-independent technology for which a number of useful libraries of reusable

software components have been developed. So, GUI's development was faster than the

applications. FIGURE 1 on page 16 show the cycles for 0-0 FATDS project development.

This cycle is named as Model-Based Project Development Cycle (MBPDC). The

product(s) is always tested with the real-life requirements during the development cycle,

even though the product(s) is not a complete one during the process. First analysis helps to

form classes and objects to create the first form of the product which is just the GUI.

Modeling and testing begins with this GUI which serves as a prototype. This is more than

15

a usual prototype which simulates a real-life application, but it is the real-life application.

Modeling leads the design, so the analysis.

Analysis/

Figure 1: Model-based project development cycle for 0-0 FATDS

There is always a working model. Functionality of the model is limited during the

development cycle and it completely matures at the end of the MBPDC..

The nature of event-driven programming and its compatibility with OOP helps to

establish separate or independent event modules. This event inter-independency and

reusing makes the modification easier at any time of MBPDC.

4. Naming Conventions

For a more readable code I have used long meaningful names for variables,

enumeration types, classes, and objects etc. E.g., SubFireCallWndCls and RadioGrid.

16

I have also embedded small identifiers into the names to distinguish them from

others. In addition, I named an instance of a type or class almost the same with its

instantiator, e.g., SubFireCallWndCls is a class type and SubFireCallWnd is instance of

that class. Table 2 on page 17 displays a list of embedded codes which are used for naming

in this research.

TABLE 2: EMBEDDED CODES FOR NAMING

*c1, Class defination
*DlgCis Dialog window class defination
*Dig Dialog object
'WndCls Window class defination
*Wnd Window object
Button* Button control object
Check* Check box control object
Combo* Combo box control object
Edit* Edit control object
List* List box control object
Radio* Radio box control object
h* Any kind of object handler
ID__* Identifier for window objects
*Type Enumeration type definition

B. ANALYSIS

1. FATDS System Requirements

FIGURE 2 on page 18 displays a block diagram for Firing Support (FS) portion

of FATDS. The basic function of the system is to make the guns fire with computed data

against the targets on the battlefield which are asked from artillery to be destroyed.

17

Target acquisition elements

DDo
Firing report

Target into Target into TargetTarget into

Gun and Firing table
ammo MTO Fire call Fire call MTO Met messagestatus

Gun and ammo status Fire Direction Centers
Firing reports

Fire commands
Command and Control Centers Fire Orders

k Met messagesr

Target acq. into Surveys
Met messages
Surveys Firing reports Fire commands

Gun and ammo status

oeomenT se
Guns

Figure 2: Block diagram for Field Artillery Tactical Data System / FS

Each of the block elements could represent more than one of that element and in

diverse organizational structures. The automation of the each structure may differ too.

Regarding the communication tools of any kind and battlefield irregularity, the system

should keep to wore with acceptable functionality. The major system elements are:

"* Guns: They are •-;anized in platoons, batteries or battalions as basicfiring units. The
number of guns and models of them vary.

"* Fire direction centers: The element of a command post consisting of gunnery and
communication personnel and equipment by means of which the commander exercises

18

fire direction andlor fire control. The fire direction center receives target intelligence
and requests for fire and translates them into appropriate fire direction [Ref.): p.G-
81. FDCs are functional at platoon, battery andlor battalion levels.
"Target acquisition elements: There are various target acquisition elements. FA
battalion S2, targeting officer, fire support team, aerialfire support observers, combat
observationflasing team, survey platoon, weapons-location radar, moving-target-
locating radar and electronic warfare are all the elements for target acquisition.[Ref.7:
p.5-11

" Command and control elements: From Fire Direction Officer (FDO) at platoon I
battery level to higher tactical headquarter who plans and controls the fire are included
in this block. Their role is tactical rather than technical. These elements make decisions
about "Who will fire?", "Which target(s) will be fired?", "What kind of weapon(s) &
ammunition(s) combination will be formed?", "When will be the firing time? Different
levels of command may have different control responsibilities on various operations.

"• Survey elements: These are technical elements too. Survey elements provides met
messages, target intelligence, and land survey support for the FDC and command
control elements.

" Database: Local or centrally located, distributed or single database system is the main
information source of the system. To avoid waste of resources, central databases are
encouraged.

" Timer: This is just a control element which sets the timed fires or other events. All the
elements should follow a central time function for synchronization.

The following inputs exists:

"* Fire call

"* Fire order

"* Fire commands
"• Fire orders
"• Firing reports
"• Firing table

"* Gun and ammo status
"• Message to observer (MTO)
"• Met messages

"• Subsequent fire calls
"• Status reports

"* Subsequent fire call
"* Surveys
"• Target acquisition

"• Target info
"• Target lists
"• Target update

19

.Time

2. Defining the Boundaries of the Problem

Field Artillery Tactical Data System is sub-part of the army's integrated

battlefield automation program. Since this is a huge and sophisticated program this research

has captured only Field Artillery (FA) Battery Fire Direction level regarding its FS portion.

FIGURE 3 on page 20 displays the block diagram of battery level tactical data system / FS.

Battalion FDC /
Battalion TACFIRE / LTACFIRE Observer(s)

Gun and ammo status
Firing report MTO Fire call

Fire oTarget into

Target Info
Trect1

Battery FDC

Met messages Fiin rsut
Surveys un and ammo status

Fire command

Survey elements Time Gun(s)

Timer

Figure 3: The block diagram for FATDS IFS at Battery level

20

FIGURE 4 on page 21 displays the block diagram for battery fire direction

system. There are two major functional units, firing chart and computation. Firing chart

Observer

Target location into

Fire calls
bsequent fire calls

Battalion Target list Survey elements

Chart values (range, deflection)

DB

Timer Time Comptaton

Met messages Survey elements

Fire commands Firing report

Guns

Figure 4: The block diagram for battery fire direction system

holds the coordinates of:

"• Batteries (gun positions)

"• Radars

"* Observation posts
"* Registration points
"* Targets

21

* Check points

Firing chart produces linear and angular distances of any two points, which are on

the chart, for computation.

After having chart values Computation transfers them into firing commands and

sends them to the firing elements (guns). Computation reflects its computational results on

Record of Fire (ROF) form. Computation produces the firing commands regarding:

"* Time: At my command, When ready, Time on Target (TOT).

"* Firing techniques: Surveyed firing, copperhead munition firing, nuclear munition
firing, smoke projectile firing, illuminating projectile firing, MET+VE technique,
registration, Fire for Effect (FFE), special corrections.

"* Firing tactics: Attack of large targets, target analysis, safety procedures, munition
effects.

"* Ballistics (interior and exterior): Nature ofpropellant andprojectile movement, muzzle
velocity, meteorological conditions, dispersion.

3. Defining the Objects and Classes

Followings are the classes derived from the block diagram of the system and/or

description of the diagram elements.

"• Dispersion

"* Chronometer
"* Fire commands
"• Fire Calls

"* Subsequent fire calls
"* Fire order

"• Message to observer

"• Computation
"* Firing report

"* Gun and ammo status
"* Target database

"* Firing report database

"• Met messages database

"• Guns and munitions database

22

4. Define Subject Areas

Classes are grouped into two main subject areas: Firing chart and firing

computation. Those groups will be the basis for the design of GUI. The classes, which have

been formed so far, are nothing to do with GUI but they will be re-organized after the events

of the GUI is determined.

C. GRAPHICAL USER INTERFACE DESIGN

So far two functional unit appeared. They will be named as OFire for firing

computations and OChart for firing chart manipulations. GUI design was the backbone of

the analysis phase. They have been accomplished together. Since the GUI served as a

prototype of the final product, it was useful determine the events for objects, classes and

the relationships of them.

1. Design Considerations

The design of a GUI is being effected not only by the capabilities of the system's

environment, but also by the following criteria.

a. The User

Since both OChart and OFire are specific applications for a Field Artillery,

the number of the users is limited with the FA Fire Direction Center (FDC) personnel.

Training requirements are still one of the major issues with the user. Windows GUI

environment eliminates some of the training problems and add these features:

"* The user does not have to memorize everything. He/she inputs most of the data by
selecting, not by entering. He/she is not overloaded with decision making points at the
same time, but he/she is asked to do only when necessary.

"* The GUI is forgiving for the user decisions, it is possible to take decision steps back.
So, the system is less error-prone.

" Even though the user knows nothing about Dos/Windows or any other OS which
operates a window style environment, this will help the user to adapt the software in a
shorter time than the command line style interface. There is no certain educational
background except reading&writing.

23

b. Consistency

One of the most important issues with GUI is consistency. Each part of the

applications should be consistent with:

"* Other issues of the user's way of life: Button shapes and behaviors, sounds and
graphics for warnings, etc., should be consistent with the user's daily life.

"• Other applications in that OS environment: The user should transfer some of her/his
experiences from one application to other. This helps to shorthen the training and
adaptation period, besides prevent some errors which are source from controversies.

c. Screen-Layout Issues

Menu system, naming terminology, semantic grouping of items, fonts and use

of color are main points of screen-layouts. All of these factors contribute to success of a

software, so the victory.

d. Customizing

To allow a user to customize an application makes easier to use that

application in accordance with that user's condition only. To provide standardization and

easier adaptation of users to Ohe applications customization is not allowed for OChart and

OFire applications.

e. Input and Output Devices

Main input device for Windows applications is mouse as well as keyboard.

Voice activated commands may be used with some limitations too. Lessening the role of

keyboard for data entry decreases the training needs and increases the performance of the

application

f On-Line help and Tutorials

Application should feed the user with necessary information which is about

what he/she is doing, or to do etc., at a time when he/she needs. Windows allows a standard

style help system which is context-sensitive and topic-navigated.

24

g. Errr Handling

People are tend to make errors even if they are trained on that topic. Windows

event-driven environment makes it easier to add check points and warnings for each

reaction of the user.

2. OFire

All the windows and dialog boxes designed for the OFire application are

displayed on APPENDIX-D.

3. OChart

All the windows and dialog boxes designed for the OChart application are

displayed on APPENDIX-D.

D. OBJECT-ORIENTED DESIGN (OOD)

1. Identify Classes and Objects and Their Semantics

The classes have been formed with their actual names and grouped into

programming modules. Not all the classes have been formed at the same time and those

classes are the last phase of the development.

a. The Classes for OFire

(1) bursts.h

"* SheafWndCls

"• RurstsWndCls
(2) button2.h

"* button2Cls
(3) command.h

"• CommandWndCls
"• ChronoWndCls

"* FireCommandsWndCls

25

"* InfoWndCls
"* SubFireCallWndCls

(4) fire.h

"* FireCaUJDlgCls,
"* PolarWndCls
"* ShiftWndCls
"* GridWndCls
"* SuppressionWndCls
"* FireOrderDlgCls
"* MTOD~g~ls
"* SubFireCallDlgCls
"* TOTAtTimeDig~ls
"* TOTAfterrimeDlgCls

(5) globals.h

"* ComputationCis
(6) report.h

"* ReportWndCls
"* TextWnd~ls

(7) selcct~h

"* SelectionWndCls

b. The Classes for OCharf

(1) abslist.h

"* genAbstractList: Implements an abstract class of linked lists.
(2) Chart.h

"* GridSetupDlgCls
"* TargetSetupDlgCls
"* GunSetupDlgCls
"* NewEntryDlgCls
"* NewFrornEntryDlgCls
"* GunlnputDlgCls
"* TargetlnputDlgCls
"* TargetDBDlgCls
"* GunDBDlgCls

(3) gen2listh

"• genOdList

"* genUdList
(4) globals.h

"* GlobalCls

(5) gundb.h

"• GunDBCls

(6) info.h

"* SelectionToolCls
"• DistanceToolCls

"• NewToolCls
"* NewTToolCls

"* SearchToolCls

"• PickToolCls
"• InfoWndCls

"• ToolBarWndCls
"* CanvasWndCls

(7) Targetdb.h

"• TargetDBCls

2. Identify Relationship Between Classes and Objects

FIGURE 5 on page 28 and FIGURE 6 on page 29 display the class relationships.

In those figures system and user-defined classes are distinguishable. All the dialog or

27

window classes which helps to develop GUI, inherit most of their behaviors from their

parent classes.

TOTptereirmeDlgCls
, _I tTOTAtTimeDIgC-s I

TDIalog MTODIgCls I
\• SubFireCa,,OgCls I

F e h hFireOrderDigCrsr
'1 ~FireCallDI~gCls

3 TSreamablemn C ss e
faTndo

Object

CnCoovandWACP NIX
•ChronoWndCsIs

'1FireCommandsWndCls

TWindow SubFireCallWndCl.s

•Polar~di
S hiftWndCls i

SGridWndCls]
•1SuppressionWndCls I

Figure 5: Class hierarchy for Ofire (i)

3. Implement Classes and Objects

Complete listings of header files are provided on APPENDIX A and APPENDIX

B.

28

Tin"rw•, I Tontrol I!TButton ! uton2CIs

DBGunCIs

FDBTargetCls

(WParadoxRecord

(WParadoxrable

(WParadoxEngine
t DBTable_ FCIs

t CorputationC•sI

Figure 6: Class hierarchy for OFire (ii)

E. FILE ORGANIZATION

1. File Organization for C++ Windows Programming

FIGURE 7 on page 30 shows a sample file organization for a a simple C++

Windows program. Every class is defined in a header file and its implementation is placed

in source files. One of the exception to this rule is Main file. There are two class definitions

for a main Windows program and a main program function. One of them inherits from

TApplication class and it registers the instance of the application to Windows system. The

other one inherits from TWindow or TDialog class and it creates a window for the

application. The declarations of those classes are generally placed in Main Source File

29

since they will not be called or instantiated by anyone. Only main program functions

instantiates them and use it.f

Main Header File i Mein itons, a os r

SMain Source File

f Class Header Fileser
Class . ob:j File I

Iclass Source Files •"

SResource Fl.res file

Figure 7: C++ development file organization for Windows environment

Main Header File is used for some definitions, and dialog box class declarations.

If some objects are placed in .DLL files, its header friles are still kept like other built-in class

libraries. The only difference for their usage is that, it should be told to the compiler the

implementation of any class or function is placed in .DLL files. That specific.DLL file will

only be searched during run-time.

30

Another file which is specific to Windows is resource file. It is a text file and holds

the resource descriptions of:

"* Accelerators
"* Bitmaps
"* Cursors
"* Dialog boxes

"* Fonts

"* Icons

"* Menus

"• String tables

Resr irce file can be created either manually or with Resource Workshop. It is not

in a specific language, though it is in a special text format. Borland C++ compiler compiles

it with a special compiler and links it to the code. All the resource code is placed in the

executable file in separate modules. This allows the Resource Workshop application to

open and modify the resources of an application without disturbing the executable's

functionality. Eliminating compile and linking efforts, this makes the maintenance easier

from the resource point of view.

31

2. FATDS's File Organization

The file organization of FATDS is shown on FIGURE 8 on page 32 and FIGURE

9 on page 33.

C- Zie~c D 55anl3f~d

button2.h butn.W65San14cd,
55anl~e~db

cmadh command.;h 65anl4f~d
__________55an1~a~db

dbgun.h dbu55an16a~db

dibtarget.hj (5i5~ThSanl7BadbcV~targt-Zýý Sanl~a~db
dbtbL~f.h_- bb Zp usd

ir.h
gibi.h goascp7

pxengine.h

report.h rpd;p

,xioxeng.hj

Pdoxrec.h fire~ini

pdoxtab.h _______

________ bwoc.dU

paradox.dil
L weIZI pxengwin.dtI

Mie.def

Figre 8: File orgainztion of FATDS / FS (ofire)

32

gen2list.h gnls-p

cibtargot.h C _____________

Idbgun.h D C tu~p

absls.h]

pxengine.h::

deins.h

globals.h

wpdxrch chartisav
wpdoxtab.Dh__ ____

~Mad~p4bw~c.dII

chart~ef

Figure 9: File organization of FATDS /IFS (ochart)

33

F. DESIGN DECISIONS FOR DLIA

Borland C++ and Windows both have limited number of DLL files. Each application

adds new DLL files to the system. The more an application uses DLL files the more

performance it provides to the user.

DLLs, necessary for out prototype are:

"* Custom controls, e.g., button2.

"• Database engine and other database service files which works with database engine.

G. INITIALIZATION FILES

Some objects in the applications may need to initialize some of their attributes before

they are created and store them back, just after they are deleted. The values of those

attributes should be stored in a persistent environment. C++ does not provide a built-in

database management system (it does not have to) to store such values. There are three

options to do that:

"* To use a separate DBMS

"• To use binary files using C++'s stream libraries
"* To use text files using C++'s stream libraries.

First option is not beneficial for such short amount of data. It increases the size of code

and implementation time. Binary files store and retrieve the objects keeping their

abstraction or their type.

For the OChart application, it runs using the last values of which just before it is

closed. E.g., the user will probably want to open the firing chart with the same window size,

at the same screen location, with the same scale and customization etc., as he/she close it

34

for the last time. Each object stores these kinds of persistent data in a - say file. One file

for each application is enough and it should be binary file.

Some persistent data which is useful for customization should be stored in text files

with *. min extensions. These kinds of data are mostly in string type or don't cost much to

convert to/from other types. Its difference from *. say files, *. ini files:

"* Can be edited by the user without running the application using any kind of text editor.
"• is useful to feed any type of control, like combo boxes and list boxes, with persistent

data. Any object which can easily reach these data without worrying about data
structure.

35

IV. COMPARISON OF OBJECT-ORIENTED VS. CONVENTIONAL

PROGRAMMING PERFORMANCES

A. INTRODUCTION

As the need for the computers increases, so do the problem domain for the software.

The software engineering goals, which are described in the first chapter, are sourced from

the software problem. Some of the problems can be stated as [Ref.3: p.8]:

"• Responsiveness: Computer-based systems often do not meet user needs.
"• Reliability: Software often fails.

"• Cost: Software costs are seldom predictably and are often perceived as excessive.
"* Modifiability: Software maintenance is complex, costly and error-prone.
"* Timeliness: Software is often late and frequently delivered with less than-promised

capability.

"• Transportability: Software from one system is seldom used in another, even when
similar functions are required.

"• Efficiency: Software development efforts do not make optimal use of the resources
involved (processing time and memory space).

0-0 is not a silver bullet to solve those problems, but it has important features which

has more meaning in skillful hands. Following sections evaluates various criteria to put

forward the compared performances of 0-0 against nonO-O programming environments.

B. COMPARISON CRITERIAS

1. Modifiability

No software is perfect. There could be always errors. Even though a software

meets requirements of the user, later the user will probably demand something more from

that software. Modification is needed for two reasons:

"* Errors

"* New requirements on the software

Modification is almost similar to fixing or modifying a car. If the system is

complex, modification should be located on the design job first. The role of design job or

36

architecture of the system is to avoid getting lost in the complexity of the system. So the

design should be consistent with the system. There are two step for modification:

"* Locating the modification point(s) in the software system
"• Performing the modification

First step is mostly effected from the design tools, while the second one from

programming language environment. The keywords for both steps are clarity and

consistency.

Windows programming environment provides some modification easiness of its

own: Control tools (like buttons, string table, accelerations etc.) which can be observed

from Borland C++ Resource Workshop, can be modified without even recompiling the

whole software.

The relationship between major 0-0 features and modification will be discussed

on next section.

a. Encapsulation

Modification may come with some extra problems like:

"* Increasing the complexity of the system unnecessarily
"• Endangering integrity of data in the modules of the software

In C++, providing encapsulation, every object is responsible of its data and

detail of its implementation. Mostly, objects hides their data from outer world, they just

allow outer objects to use service or member functions to reach specific data of their own.

b. Inheritance

Multiple inheritance is still in dispute about whether it is a strength or move

of a "white elephant", in 0-0 world. C++ supports multiple inheritance and should be used

carefully, since it could be a big problem for modification. All the inheritance concept

mentioned in this research is single inheritance.

37

Suppose that FireCommandsWndCls is a class and has member functions of

f1 (), f2 (), f3 (), and so on. After a time it become necessary to make some modifications:

changing the implementation of fz (), adding a new behavior of f new ().

In the conventional paradigms, modules, which does not reflects the user

requirements, should be either:

"* Thrown away, since they are not functional any more: If a replacement is required, a
new module should be created from scratch. Old code is wasted and becomes
completely unfunctional.

"* Modified: Software integrity should be preserved. Modified part of the code is lost.

For the 0-0 paradigm, inheritance is another chance for reusing of the old

code: Creating another class which inherits from FireConmmandWndCls, overloading fi ()

and having fnew () member function. Big portion of the old code is still functional and the

rest can still be used by others. Since the old code is preserved, its reliability is preserved

too.

c. Polymorphism (dynamic binding)

Consider the following sample codes derived from the OChart application:

A base class:
class SelectionToolCls

(

public:

virtual void DoMouseDown(long, long);
virtual void DoMouseMove(long, long);

Child class,:
class DistanceToolCls : public SelectionToolCls

public:

virtual void DoMouseDown(long, long);
virtual void DoMouseMove(long, long);

38

Child class2:

class NewToolCls : public SelectionToolCis(

public:

virtual void DoMouseDown(long, long);
virtual void DoMouseMove(long, long);

DistanceToolCls and NewToolCls are two sample classes with their base

class of Select ionToolCls. They all represent a button on the screen. If a user selects one

of them then an appropriate action should take place. Those actions are the same by title

but different by implementations. Since the interaction of the user can not be estimated in

advance, conventional methodologies search for the user's interaction by case-like

statements/functions. Each time the user's decision is wondered then it is searched. Adding

and deleting buttons make the user to update all the case groups.

Dynamic linking or polymorphism makes modification easier and more

reliable than conventional paradigms. Declaring a host pointer:

SelectionToolCls *Selection;
DistanceToolCls DistanceTool;
NewToolCls NewTool;

And assigning sub-object to the pointer when needed:

Selection = &Distance;

or

Selection = NewTool;

Above assignment are made after user's interaction. Within the code:

Selection->DoMouseMove (..);

or

Selection->DoMouseDown(..);

39

The pointer selection is independent from address object. It will be

bounded dynamically and will retrieve appropriate class's virtual member function (which

is last assigned one to the pointer). When a modification is needed, creating a new child

class and making an assignment under a button control is sufficient. Polymorphism makes

the code shorter and clear, so helps the modification.

2. Efficiency

The goal of efficiency implies that a software system should operate using the set

of available cesources in an optimal manner [Ref.3: p.30]. Resources are grouped into two:

"• Time resources

"• Space resources

The use of resources is mostly dependent on hardware and the algorithm which is

used in the software. The 0-0 programming paradigm does not have significant impact on

efficiency.

3. Reliability

The software system should operate for long periods of time without human

intervention. This gains more importance especially for mission-critical applications.

Software engineers accept that there is no perfect software. The goal to minimize the

failures which endanger the mission. For increasing reliability, OOPLs provide:

"* Object structure: Provides realistic mapping from real-world objects to form the
problem domain.

"* Encapsulation: Protects the objects' own privacy and provide data integrity.

"* Reuse of reliable objects: Assuming the old objects are well-tested, reusing of them via
inheritance eases the testing of the new object(s).

4. Understandability

Understandability is essential for modification and project management, because

of the need for coordination. Understandability is dependent upon programming language

and tools. Language is the way to express the real-world solution [Ref.3: p.31].

40

One of the fundamental differences, which distinguishes 0-0 from nonO-O is

mapping from problem domain to software solutions. Conventional methodologies

decompose a system into modules for which each module represent a major step in overall

process. Object-oriented methodology keeps the real-world objects or decompositions in

their abstraction and represent them in objects. "Call for Fire" process which is send from

an observer to FDC for being a fire request, can be represented as an object in 0-0. It has

verbal operations and noun phrases, which describe its behaviors just like the real-world

objects. It keeps its unity and communicates with other objects. The benefits of objects:

"* Similarity of objects to the real-world objects makes disowning of 0-0 projects easier
and more readable.

"* Dealing with object modules is similar to real-world objects, so, maintains,
modification and extensibility of the software is easier then conventional ones which
are created by using top-down structured design.

"* For large projects, it is easier to decompose the job without losing semantics of sub
modules. This increases the reliability of subparts.

5. Code Size and Cost

One of the tools to estimate the cost of a software is Cocomo1 . Cocomo is a lines-

of-code-based costing model that estimates the software development cost. The cost is

determined with the formula:

SM = A * KSLOCO

In the equation, SM is the number of staff-months which is required to complete

the system development; A is an empirically derived number that converts 1000 lines of

code into its equivalent cost in SM; KSLOC is the lines of source code (expressed in

thousands); and B is a factor that compensates for the rnonlinear nature of software

development. [Ref.19: p.3631

The role of 0-0 in decreasing the Line of Code (LOC) shows itself with its reuse

capability. Reusing becomes more effective when:

1. Barry Boehm's Constructive Cost Model to estimate effort, man power, and so on [Ref.2].

41

"• The size of code (or project) is too large (in ten thousands of LOC)
"* Application completely or partially use high degree of reusable software components,

like GUI component.

One point should noL be disregarded, reuse, like cache memories, provides

diverse performances on different problem domains and it mainly depends on design.

6. Portability

Portability is mostly dependent on both language and environment. 0-0

paradigm contributes to portability with its encapsulation feature.

FIGURE 10 on page 42 displays a sample Borland C++ include file which

#ifdef _BORLANDC
II PC-specific includes
include

#endif

#ifdef Unix
II UNIX-specific includes
include

#endif

Figure 10: Selective includes of a sample Borland C++ header file.

behaves selectively for include files. Compiler checks the operating system and uses the

appropriate include files. Since all the modules and objects have two parts which are

interface and implementation, implementation part could have specific features to its

environment. The User or programmer is not interested in that part. To port a software to

another environment requires compiling & linking again.

7. Project Management

Dcsigning and implementing systems consisting of tens of thousands, if not millions,
of lines of code is quite different matter. The effort required to complete such a system
is clearly beyond the intellectual physical capacity of one person. [Ref.3: p.7]

42

Gathering more people into a single project creates other problems:

Communication and coordination.

FIGURE 11 on page 43 displays the resource allocation for 0-0 FATDS / FS in

terms of time. The time which is spent for analysis and design is more than coding. This

one of the characteristics of 0-0. Design decisions effect the future works. Reuse should

be a project goal like any other [Ref.16: p.44].

Resource,,.

Analysis Design Coding Testing

Figure 11: Time allocation for development elements.

a. Project Organization

There are four types of alternative project development styles [Ref. 16: p.4 4]:

"• Rapid prototyping
"* Round-trip
"• The iterative style: Develops a series of solutions to a problem, each one close to

satisfying the requirements. Each solutions is complete but its accuracy or
acceptability improves with each pass.

"• The incremental style: Builds system functionality a little at a time. It differs from
iterative development in that the results of each increment are not an entire solution,
but part of it. This style has been advocated for some time for conventional projects.

43

Object-oriented development is best suited to the iterative or incremental

style of development. Abstraction of the real world objects in 0-0 terms makes possible to

work with objects or modules independently. Object can be put in action as soon as it

possible whether they are completely ready, or not. This gives a chance for:

"* Early evaluation of objects which justifies the rest of the work.
"• Estimating the cost of the remaining job more realistically.
"* Allocating the resources equally for mid-term goals.

For is research a model named model-based project development cycle, has

been applied for FATDS/FS. It is both incremental and iterative. FIGURE 12 on page 44

shows the object development algorithm with MBPDC. OOD sets the goals of each object.

Since an object may not be fully functional at moment during the implementation-testing

process, mid-term expectations should be planned for them (current goal(s)).

Create ne object

Jh -bjetii the big picur

increment/iterate its _N stif the cuYcurrnt ga~)
imlem entation

<

Figure 12: Object development in MBPDC.

44

Conventional design methodologies have the problem of decomposing the

problem domain in to functional sub units. Since their modules represent verbal actions,

conventional languages are not good for iterative development cycle.

45

V. DATABASE MANAGEMENT SYSTEM (DBMS) SELECTION FOR FATDS

A. INTRODUCTION

FATDS has a great deal of data to manipulate. Data should be:

"* Kept in reliable environment(s)
"* Shared from other nodes of the system

FATDS's database system should provide:

"• A distributed environment: Supporting multiple workstations connected to a local or
wide-area network, with one or more database servers providing transparent access to
multiple data sources.

"• An advanced user interface: Provided by a graphics workstation or PC with the
capability of integrating text, graphics, pictures, and possibly sound and video.

Before implementing the database part of the project two questions should be

answered; First, what will be the DBMS's source? It could be:

"* Programming language's own DBMS.
"* Application Developers's own DBMS.
"• Commercially available DBMS.

Second, what will be the database model for DBMS? It could be:

"• Object-oriented database model.
"• Other database models.

"* Composition of database models.

B. CHOOSING A DBMS SOURCE

1. Programming language's own DBMS

Borland C++ does not have a built-in DBMS like most of the other programming

languages. If the programming language has provided a DBMS, then:

- It would be completely object-oriented.
- It may be easy to embed DBMS functions or objects into the source code.
- It may not be satisfactory for the applications requirements, e.g., security, integrity,

suitability to distributed databases and/or for large objects.

46

"* There would still be problems about using existing databases (which have been created
by other DBMSs.

"* It would have enforce to use the same language's native DBMS format for other
applications.

2. Application Developers's own DBMS

Another option is to develop a DBMS which has been created specially for the

project or general purpose. It is not commercially available. If it is task-oriented then it

meet all the requirements of the project and acts well with the application code. It does not

have to be implemented with application's language, but to embed database system calls

there should be third party communication programs in application's language.

One of the features of this implementation is that it is completely object-oriented

like the first option. Since this choice under the control of the application developer, it can

be maintained or modified according to requirements.

The problem with these kind of DBMSs is maintenance. Its development should

be included into the project, hence, this increases the project burden.

3. Commercially available DBMS

Commercially available DBMSs are also for general purpose, however there is a

selection option according to the project requirements. These DBMSs are developed

outside the project (FATDS) environment, so, developing a DBMS never be another task,

but to use it. It is possible to use/create various databases other than the project's. If it is a

widely used commercial DBMS, it will possibly be used longer.

Disadvantage with this choice is maintance. Only the DBMS vendor can provide

necessary modifications on the application.

47

4. Choosing the DBMS Source for FATDS

Using a commercially available DBMS is chosen for FATDS. If it does not

specifically violates the requirements, "buying a product is generally cheaper then

producing it".

One of the advantages of commercial DBMSs is that database can be created

without using the host application. This provides to use the same database from other type

of applications locally or via network.

C. CHOOSING A DATABASE MODEL

1. Database Model Options

There are various data models. The major data models are hierarchical, network,

relational and object data models. Each of the data model is not alternative of the other(s).

There are advantages, disadvantages and suitable applications for each the data models.

In hierarchical data model, data is organized in inverted tree structure and is

accessed form the top the bottom in a series of nodes similar to branches in a tree. The

inverted tree structure provides clearly defined and fixed path for accessing the data by

traversing the branches of the tree. The rigidity of the structure has some disadvantages in

that new access path, not defined at he outset, may complicated or even impossible to

achieve. Modification of the database structure is a very complex task.

The network data model traded off some of the high-access performance for

flexibility in organizing and accessing the data. As in a hierarchical model, the data is

organized in and inverted tree. The greater flexibility is achieved by allowing a node to be

connected to more than one branch. Records are linked by predefined pointers. Equal or

better performance, as compared to the hierarchial model, was achieved by maintaining

48

permanent pointers linking records. The complexity of the data structure made queries

more complex and modification and ad hoc queries more complicated

The relational data model promised a structure that met these new requirements.

Structurally different from inverted trees of the hierarchical and network data models, data

in the relational data model is stored in tables consisting of columns and rows. Links

between data records are largely established as needed on an ad hoc basis. The rows of a

table represent records and the columns within a table represent the fields in a record.

Different types of records are stored in separate tables. Some frequently used connections

between tables can predefined, while others can be established at the time of query. The

data and their description are maintained separately, but changing data description is not

simple. This model achieved the desired flexibility and ease of use, but at a cost. The

relational data model requires a higher level of processing to establish connections and

access data. Consequently, system requirements for processor and memory are higher to

achieve the same level of overall performance.

The Object data model differs itself from other models representing real-world

data in intelligent objects which combines the abstraction and behavior of the real-world

objects. Direct correspondence between real-world and database objects maintains

integrity and identity of objects so they can be easily identified and operated upon [Ref. 13:

p.442]. Objects have their own behaviors, this provides them to interact with other data

models. Advantages of the object data model: [Ref. 13: p.444]

"* Extensibility: Object types and their methods can be modified as needed. Such changes
are localized to the relevant object type and hence are much easier than in record-
based system.

"* Behavioral constraints: Because of encapsulation, the behavior of each object type is
predetermined by a fixed set of methods. Hence, database operations are constrained
to be within these behavioral specifications.

"* Flexibility of type definition: The user is not limited to the modeling concepts of data
model but can define many variations of data types, each with unique properties.

49

"* Modeling power: The inheritance of both attributes and methods is very powerful tool
for data modeling. In general, the abstractions of generalizations/specialization,
idertification, and aggregation are well supported in the current data models.

Disadvantages of the object data model:

"* Lack of associations: The abstraction of association is not directly supported and is
achieved indirectly by allowing interobject references. This is an inherent weakness of
the 0-0 approach.

"• Behavioral rigidity: The predetermining andprespecifying all operations by afixed set
of method create this rigidity.

"• No high-level query language: There are no high-level query languages for current
data models.

2. Interfacing Objects with the Other Models

Object-oriented databases provides to write and read objects to the disk, normally

using static or dynamic link libraries with the code.The physical storage format on the disk

is hidden from the application. The format can be flat files, relational files, hierarchical

files, or any other type.

The most primitive OODBMSs use a custom file format and enable you to only store
objects on disk. These products offer little advantage.... Likewise, the manufacturers
of these products require you to purchase their software and, occasionally, a run-time
license for each product distributed. [Ref.20: p.5]

A OODBM may either:

"* Store its objects using a format compatible with existing commercial database
management systems such as Oracle, Sybase, dBase IV, or Patadox: Data consistency
is ensured and all transactions are performed internally by the OODB. The
disadvantages are technical difficulties and the relatively slow performance.

"* Exists in parallel with a commercial database management system that mirrors the data
in the object-oriented database: It requires an update scheme to ensure that the data in
both databases remains in synch. Accessing data in an object-oriented database is
much faster -2 to 10 times faster- than in an relational database.

3. Choosing a Data Model for FATDS

There is no single data model which completely fits FATDS's database

requirements. Object-oriented databases can interface with other data model. This provides

50

the opportunity of combining the advantages of different data models. For this research,

interfacing objects with relational DBMS is selected.

In relational DBMSs, the structured organization of data in tables and the

capability of the database system to interpret each column of data serves well for

applications involving pure numerical and textual data. Variable length data elements such

as free-form text, images, and voice does not fit into the structure of relational databases.

Relational database vendors created a new class of data type called Binary Large Objects

(BLOBs). These data types can hold very large (and variable length) data and they are not

interpreted by the database. This new feature provides relational DBMSs to support

multimedia data management.

Relational database model has advantages that the OODBM can not support:

[Ref.22: p.68][Ref.26: p.331

"• The relational schema is stored in the database catalog.

"• General-purpose query programs can use the catalog.
"• The SELECT, PROJECT, and JOIN operators can build new database views at run

time.
"* The database is cross-compatible with other applications that use the same DBMS.
"* The data and their description are maintained separately.

The object data model has advantages that the relatiopal data model can not

support [Ref.22: p.68][Ref. 18: p. 169]:

"• Variable length data member: It can support such applications as imaginary,
multimedia, geographic data, weather.

"* Abstraction: The behavior of an object is described by a class definition that is created
by data abstraction. By incorporating data abstractions at (he level of the database, it
is possible to make changes to the way a database class is implemented.

"* Class extensibility: In a relational database, the only parameterizable type is a
relation, and the only operations possible on all relations are get-field value and
set-fieldyvalue. In the object data model, interface of each object is customized to that
object.

"• Arrays permit repeating groups.

51

" Encapsulation: Encapsulation of data formats with methods bind data representation
and behavior.

"* Polymorphism: Customizes the behavior of derived data types.
"• Integrity: Especially for large systems, the integrity of analysis, design and

programming to map the real-world data into objects provides the simplicity to build
the database system. This provides easy maintenance of the database system.

"* Reusability and adaptability: They are the two important features of object-oriented
systems, which are accomplished using inheritance.

"* OODBMSs are faster: Because, relational databases pull information from a variety of
tables into one result set, based on JOIN operation while OODBMSs make the same job
by calling member functions.

" Automatic type checking at the point of use: The object-oriented database performs
type checking on the arguments to method calls. Thus, type errors are detected at the
time of invocation rather than at the end of a transaction.

" Schema evolution: Conventional data models do not support efficient mechanisms for
schema evoluton. Object data model allows user-defined operations making the
addition easier. Schema evolution includes changes to the defination inside a class and
changes to the structure of the class lattice. A set of invariants and rules can be defined
so that the schema will remain consistent as it evolves.

D. DBMS FOR FATDS

FATDS's database is implemented in object-oriented fashion which interfaces a

commercial DBMS, Paradox. Borland's Paradox for Windows. version 1.0, is a relational

DBMS. Paradox provides network support, password protection using encryption, binary

large objects (BLOBs), multiple indexes, and composite indexes.

To use Paradox table in the applications and embed into the C++ source code a third

party Engine is need: Paradox Engine. The Paradox Engine, version 3.0, is and API

containing more than 90 functions accessible from a C, C++, or Pascal program. The

Engine provides to create database tables and indexes and to perform all database-related

operations. The Paradox Engine is implemented as a DLL (for windows) that can be

distributed royalty-free. The problem with the Engine is the DLL file is implemented in C,

so it is not object-oriented. To keep the applications completely implemented in 0-0,

52

another DLL file is created, which is in 0-0. The design and implementation issues of

FATDS's database is discussed in the next chapter.

The benefits or advantages of this choice:

Working with other data format files too: The application(s) may have to work with
other data formats. FIGURE 13 on page 53 displays the object-interfaced data

AppIcatbon,

S~Database objectls)

X database Paradox
database

...:.:. ..:.:.: . .

Any DBMS, other then Paradox

Figure 13: Object-interfaced data environment

environment. Objects can be implemented to filter diverse database formats, hiding
unnecessary details from the users and end-programmers. Only the database object are
necessary to be updated according to the target database, not the application. This
makes the modification easier.

" Using a reliable DBMS: Instead of creating a DBMS which is normally a independent
task, using a commercially developed (so testedO provides more reliable DBMS
environment.

" Faster database development: Data does not have be created or maintained by the
mission-oriented applications. It should be created/maintained without running the
application or creating a special program. Database design and implementation of

53

FATDS, including custom forms, can be created by Paradox for Windows, without
using any user-created application.

Using the data with other applications: Other applications created independent from
FATDS may use the same data. Regarding the hugeness of the project and time period
of using the application, generally accepted data formats provides flexibility in use.

54

VL OBJECT-ORIENTED DATABASE DESIGN OF FATDS

A. INTRODUCTION

The database system of FATDS is determined as object-oriented database system

which incorporates a relational DBMS. OODBMS has a front-end role in this system and

back-end could be any DBMS in any data model. Object structure of the system facilitates

to work with heterogenous back-ends. Using various DBMSs as a back-end effects the

design of the database. Back-end database could be:

"* Created independent from the front-end implementation.

"• Created simultaneously or incorporating with the front-end.

Two of the situations may effect the object design differently. Creating the object-

database as a front-end together with the back-end database may increase the reusability of

the objects for later developments. For this research first option is followed to show:

"* How object-oriented database systems coexists with the existing databases.

"* The benefits of object-oriented database system interfacing with relational DBMSs.

One of the benefits of the of OODBMSs is their implementation language. Non-O-O

database system mostly have their own data languages which are not capable of complete

computational power like programming languages. OODBMSs' languages are complete

programming languages as well. This facilitates to combine database development and

program development together.

Design methodology will follow the steps:

"* Identify the basis for the database requirements
"• Define the database's functional and performance requirements

"• Conceptual design
"• Identify classes
"* Identify attributes and services (member functions)

"* Identify the relationship between classes

"• Database implementation

55

B. DATABASE REQUIREMENTS AND ANALYSIS OF FATDS

1. The Role of Artillery

The mission of field artillery (FA) is to destroy, neutralize, or suppress the enemy

by cannon, rocket and missile fires and to assist in integrating fire support into combined

arms operations. The main role of FA is to ease the achievement of commander's objective

with its fire power. The commander is a maneuver unit commander at any level.

Targets could be anything on the battlefield: Enemy units, bridges, areas, roads,

tanks, trenches, convoys, etc. Main point is that targets are not artillery's, but the

commander's. So, all the target acquisition elements work under the maneuver

commanders' control.

Since artillery normally does not have eye contact with the enemy targets, he

relies on different sources for the target information; forward observers, air observers,

radars, electronic counter measure units, higher headquarters, reconnaissance/intelligence

units, commander himself, etc., almost everybody on the battlefield is source for target

acquisition. A target could be immediate one or planned before.

Depending on the organization of the FA there could be diverse weapons systems.

Each weapon system has its own munitions and firing tables. Firing table is a book which

displays all numeric data about a specific gun & munition(s) combination.

Although there are many, only the following major application functions are

taken into account for database implementation:

"* Target management

"• Gun management
"* Firing table management (Table-F only)

Other database areas are:

56

"• Corrections management: It keeps and manipulates firing corrections for each gun and
position pairs.

"* Fired mission history management: It is a derived database management.

"• Known points management: Radars, observation post positions, etc., are all known
points.

"• Ammunition management: Amounts, type, caliber, lot are thefields to be managed. (It
is designed but not implemented.)

"• Met messages management: It keeps up-to-date met messages.

"• Friendly forces management: Positions of friendly forces and other regions which are
necessary for fire coordination, planning and security.

2. Application Functional Requirements Overview

a. Target Management

Each target is assigned a number like "AB2124". First three digits represent

a specific unit or element while the rest represent consecutively target numbers which are

assigned to that unit/element. All the targets should be located at least with its coordinates,

height and description. In addition to those: source (who located), locating accuracy,

located time, category (there are 13 category groups and each target fits at least one of

them), fired/notFired, priority, restrictions.

Targets could be a point, a region (with a size), target groups (two or more

targets with a different identification name), target series (more than one targets and/or

target groups with a special name). Battalion FDC can form a target groups and series. A

sample group name is B I C; letters represents who forms that group, the number digit in the

middle is consecutive group number. A sample name for series of targets is CASEY, just a

nick name.

The decisions that comrise the decide function include:

"* What targets should be acquired and attacked.

"• Where and when the targets will likely be found and who can locate them.
"• How the targets should be attacked.
"• Whether target damage assesment is required.

FDCs will be able to keep track of unlimited number of targets.

57

b. Gun management

Each gun has a unique number within a battery. Together with battalion name

and battery name each gun has a unique name. Guns can be organized in some batteries as

platoons (four guns in a platoon and two platoon in a battery), if not, a battery has six guns.

All the guns in battery are identical to each other. One of the guns in the battery is assigned

as the main gun.

In addition to name and each gun has position coordinates, model, maximum

range, maximum left/right deflection, common orientation deflection, orientation

deflection, firing table name.

c. Firing Table Management

Each gun has its own firing table. A firing table is composed of various tables:

"• Table-A: Line numbers of meteorological message.

"* Table-B: Complementary rang line number.

"• Table-C: Wind components.
"* Table-D: Temperature and density corrections.

"• Table-E: Propellant temperature.

"• Table-F: Basic data and correction factors.
"• Table-G: Supplementary data.
"• Table-H: Rotation-range.

"• Table-I: Rotation-azimuth.

"* Table-J: Fuze correction factors.

Above tables are for specific shell type/model, fuze type/model and

propelling charge/type.

All the firing table data are constant. Any application should not be allowed

to modify the tables.

58

C. DATABASE DESIGN OF FATDS

1. Conceptual Design

FIGURE 14 on page 60 and FIGURE 15 on page 61 display the ER diagrams for

the Target, Gun and Table-F entities. The conceptual design is performed according to

relational data model concepts.

2. Identify Classes, Attributes and Services

The classes which are formed as the front-end database classes are:

"* DBGunCls: Gun database management class.
"* DBTargetCls: Target database management class.
"* DBTable_F_Cls: Table-F management class.

Tables 3, 4, 5 displays the data members and data functions of the database

classes:

TABLE 3: DATA MEMBERS WHICH ARE USED BY ALL THE DATABASE CLASSES.

Name Access Description

nFields Private Holds number of the fields in the database table.

Names Private Holds the names of the all the table field names.

Types Private Holds the type codes for each field of the database
table.

59

ionN CoorEast CioorNodh Height
GunNo

SaWyNarne gad
Position

PlawonN
MsinGun

Model

G N MaxRange

N 1:139flection

n

Calibre OWNS M ommonOrientabonDefted

FiringTableNarne

N

MUNITION FIRED

N

bag"

<: ýý o ýun t FIRED N

M

TARGET

escripti

Position

Ca

CoorEas Height

Figure 14: ER diagram for FATDS/FS schema (gun, target, munition)

60

Elovabo AirnSIilyhn

Fneeodye rlZISm~cicHfl

FigureE~o 15AEwiarm orF TD/S chm (aleF

ForkTABL F Ar~erp61

TABLE 4: MEMBER FUNCTION WHICH ARE USED BY ALL OF THE DATABASE CLASSES.

Name Access Description

RecordTobuf f er Protected Takes the field values from the database table from
where the pointer ;s, and puts it to the buffer fields.

ReadFirst Public Moves the database pointer to first record and
reads the record into the record buffer.

ReadLast Public Moves the database pointer to last record and
reads the record into the record buffer.

ReadNext Public Moves the database pointer to next record and
reads the record into the record buffer.

ReadPrev Public Moves the database pointer to previous record and
reads the record into the record buffer.

isTableEmpty Public Checks the table if it exist or empty and return
TRUE if it is empty.

isLast Public Checks the if the pointer is at the last record and
returns TRUE if it is the last record.

Reset Public Empties the record buffer and sets all the attributes
to initial states.

62

TABLE 5: MEMBER FUNCTION WHICH ARE MOSTLY USED BY SOME OF THE DATABASE

CLASSES.

Name Access Description

BufferToRecord Protected Takes the values from the buffer and puts them to
the database table to where the pointer is.

AddRecord Public Adds the record buffer to the database. (The record
is appended if the database does not have a
primary key that requires the database to be kept in
sorted order.)

UpdateRecord Public Copies the record buffer into the database as an
update of the current record.

DeleteRecord Public Deletes the current record.

SearchByKey Public Searches the key field for a given field value.

Set * Public Set the a field value into the buffer area.

Get * Public Retrieves a field value from the buffer area.

Any other specific
member function(s)

3. Database Implementation

a. Paradox Database Tables Organization

Table 6 displays the valid field types used in Paradox tables.

63

TABLE 6: PARADOX FIELD TYPES

Type Storage Size Description
in Bytes

N a Floating point number with 15 significant digits in the
range of 10 .307 to 10w.

S 2 Integer in the range of -32,767 to 32,767.

$ 8 Same as floating point, but fixed at two digits of the

decimal.

D 4 The date.

Annn 1 to 255 NULL-terminated string of length nnn, where nnn is
less than 255.

Mn n+10, where is Unformated text BLOB. n represents BLOB-related
in the range of 0 header information, and the actual data is stored in a

to 240 separate file pointed to by the file name stored in
Paradox.

Bn n+10, where is Same as the preceding, but for unformated binary
in the range of 0 information.

to 240

Fn n+1 0, where is Same as the preceding, but for formated text.
in the range of 0

to 240

On n+10, where is Same as the preceding, nut for Windows OLE objects.
in the range of 0

to 240

Gn n+10, where is Same as the preceding, but for graphics data.
in the range of 0

to 240

b. Database File Organization

The Paradox Engine provides the pxengwin.dll DLL file together with

pxengine.h header file. Engine is implemented with C language, thus it is not object-

oriented. The Engine with its more than 90 functions provides all the database file

manipulations including:

Create, read, and write Paradox tables, record, and fields in DOS, Windows, and
network environments.

64

"* Create, read, and write Paradox BLOB fields.
"• Support explicit interactive Paradox and Paradox Applications Language (PAL)

applications, as well as other Paradox Engine Applications.
" Support other Paradox features such as password protection, encrypted table, date

encoding, searching, and error handling.

" Import data into Paradox tables through serial communications, such as when
downloading form mainframes or from external devices that can not be reached from
PAL.

"*Create stand-alone applications or applications that can be run with the PAL RUN
command.

FIGURE 16 on page 66 displays the file organization for the database

development of FATDS. In order to create an object-oriented database engine, another

DLL file is created namely paradoxr.dll. Paradox.dll is created with the files:

"• Paradox.*: Loads other header files required for others, support proper memory
allocation if multiple applications are simultaneously using the paradox.dll.

"• Pdoxeng.*: Initialize the engine and shuts it down.
"* Pdoxrec.*: Performs single record operations in a database table such as putting data

into the field or get data from the field.
"* Pdoxtab.*: It the engine is initialized it attempts to open a specific database table. If

there is not that table, then it creates new one.

Paradox.dll uses the Paradox Engine only. Database classes work with

Paradox.dll. This hides all the Paradox implementations into the database objects.

Application(s) is just aware of an object-oriented database implementation as a front-end.

The database objects may interface any DBMS.

65

paradox.h

Ipdoxen-g.h--

Ipdoxrec.h

pxedoxtabhh

Figure 16: Database development fie organiztion

66

VII. CONCLUSION AND FUTURE WORKS ON FATDS

A. SUMMARY AND CONCLUSIONS

This thesis concentrated on the benefits of object-oriented approach over FATDS on

sample programming implementations. The object-orientated approach mainly

distinguishes itself form the other conventional ones especially in two phases: Design and

maintenance. Object-oriented approach offers increased modeling power to represent the

real world in a problem domain, a high level of abstraction, and the ability to inherit and

refine object properties. Design takes the greatest portion of the software development

cycle. Maintenance is not just an (,. ter-development-event, but a continuing phase with the

design during the software's life-time as well.

The object-oriented development of FATDS is accomplished using a methodology

namely model-basedproject development cycle. This methodology depends on the fact that

nothing is perfect and a question that is "is this what you want?". A development of a

project should begin somehow, with a model of the product. The model is a prototype-like

working element which gives an idea about the product but not necessarily a completely

functional one. This model provides a chance to evaluation about the product and justifies

the rest of the work. Evaluation causes modifications on the project. The inheritance,

polymorphism and object abstraction features of object-oriented approaches facilitates the

modification of the software and provides faster project development which satisfies the

requirements than the conventional paradigms.

By promoting code reusability the object-oriented paradigm reduces the cost and time

required for software development. In order to exploit the reuse and portability of power of

0-0 approach, design plays the key role. Object-oriented approach does not differentiate

itself from other approaches without a good design. Thus, project members need to be

experienced on OOA and OOD.

67

FATDS has the following features which make to work with object-oriented approach

more beneficial than of the conventional ones:

"* Large-scale systems.
"• Modification on the software is frequently needed with new concepts, weapons,

communication systems etc.
"* FATDS operators are short-termed trained on that system(s).
"* Incorporates a diverse large and distributed database.

At the beginning of a object-oriented software development, the power of reuse may

not put itself strong since there may not be much objects which are created before. As the

development goes on, the speed of project development increases logarithmically.

Advantages of object-oriented databases are that it offers the designer a high level of

flexibility and power to implement arbitrarily complex and operations.

Object-oriented database structures should resemble C++ or some other object-

oriented language program structures for data in memory (that is, the equivalent of class

instances or objects), thereby minimizing discontinues between programming and database

operations and structures. A good OODBMS must be a full object-oriented database system

that is designed to support large-scale object databases. It should reflect the object

paradigm with object encapsulation and inheritance of both data and functions.[Ref. 1:

p.169]

B. FUTURE WORK

The programs, both th. OChart and OFire are not completed and well-tested for

complete functionality, so is the database of them. The followings will be done on the

programs:

"• Firing with special munitions
"* Firing with met + MV.
"* Interfacing with outer devices.
"• Creating the other parts of the firing table databases and for other guns as well.

68

To continue on programming development increases the objects which are created, so

does the reusability. This gives more reliable bases to compare object-oriented paradigm

with the others.

69

APPENDIX A. (OFIRE HEADER FILES LISTINGS)

Listing A.l: BURSTS.H header file

/1

// bursts.h
//

/ header file for the classes BurstsWndCls
// SheafWndCls

#ifndef _BURSTS_H
define _BURSTS_H

//note that the following code is executed only
//if this file has not been previously included

#include "fire.h"

#define IDCONVERGED 10i
#define IDPARALLEL 102
#define IDSPECIAL 103
#define IDOPEN 104
#define IDGUNS 105

_CLASSDEF(SheafWndCls)
_CLASSDEF(BurstsWndCls)
//
I/ class BurstsWndCls
//
// Purpose Displays the bursts on a canvas for each gun and allows
// the user to modify them.
//
II Notes
//
// Copyright: Copyright (c) 1993, Mustafa ESER
// All Rights Reserved
//
class BurstsWndCls : public TWindow

private:

RECT WndRect;
PSheafWndCls SheafWnd;
PButton2Cls ButtonConverged;
PButton2Cls ButtonParallel;
PButton2Cls ButtnSpecial;
PButton2Cls ButtonOpen;
HBITMAP hBitmapl;//north sign
HBITMAP hBmpLeftArrow;

70

public:

PTListBox ListGuns;

BurstsWndCls (PT.Jindowsabject AParent,
LPSTR ATitle,
int X, int Y, int dX, int dY);

-BurstsWndCls o;
virtual void SetupWindowo;
virtual void Paint(HDC PaintDC, PAINTSTRUCT&);
virtual void ConvergedSheaf(RTMessage) = [ID-FIRST + ID_CONVERGED];
virtual void ParallelSheaf(RTMessage) = [IDFIRST + ID_PARALLEL];
virtual void SpecialSheaf (RThessage) = EID-FIRST + IDSPECIALI;
virtual void OpenSheaf CRTMessage) = [ID-FIRST + ID-SPENI;
virtual void Guns(RTMessage) = fIDFIRST + ID-GUNS];
virtual void DrawBorder(HDC hDC, mnt xl, mnt yl, mnt x2, mnt y2,

BOOL isUp);
virtual void UpdateListo;
virtual void UpdateButtonArrowo;
virtual void UpdateInfoAreao;
virtual void UpdateSheafWindow();

1/class SheafWndCls

//Purpose Creates a canvas for BurstsWndCls as a child window,
// displays the bursts.

/1Notes

IICopyright: Copyright (c) 1993, Mustafa ESER
/1 All Rights Reserved

class SheafWndCls :public TWindow

private:

RECT WndRect;
HCURSOR hCursorTo;
int Cx;
int Cy;
long ScaleFactor;

public:

SheafWndCls (PTWindowsObject AParent,
LPSTR ATitle,
mnt X, mnt Y, irt dX, mnt dY);

-SheafWndCls U;
virtual LPSTR GetClassNameV);
virtual void SetupWindowo;
virtual void Paint(HDC PaintDC, PAINTSTRUCT&);
virtual void WMLButtonDown (TMessage &Msg) = (WI'FIRST +WMLBUTTONDOWN];
virtual void WMSetCursor(TMessage &) =[WMtFIRST + WMSETCURSORIJ;

71

#endif _BURSTSH

Listing A.2: BUTTON2.H header file

//
// button2.h
//
// header file for Button2Cls class
/ /****W**W**********WWWWW**W*********W*******************W*W******W***

#ifndef _BUTTON2_H
define _BUTTON2_H

//note that the following code is executed only
//if this file has not been previously included

#ifdef _BORLANDC_
// PC-specific includes
include <owl.h>
include <button.h>
#endif

#ifdef Unix
// UNIX-specific includes
#endif

_CLASSDEF(Button2CIs)
//
// class Button2Cls
//

// Purpose Creates a custom button. It inherits all the behavior
// TButton class and adds the following features:
// >It has a constant background.
// >It may be instantiated with atmost two bitmap
// resource name. if it is intanctiated with two
I/ bitmaps, it displays the first one regularly and
// displays the second one when the button clicked.
// If it is instantiated with one bitmap only, then
// it displays that bitmap for all occassions.
// It may be instan'jated with no bitmaps.
I/ >Bitmap is displayed on the right of button while
// the text is on the left.
//

/1 Notes The size of bitmap file should be smaller than the
// button sizes. Otherwise the bitmap is clipped.
//

// Copyright: Copyright (c) 1993, Mustafa ESER
// All Rights Reserved

72

class Button2Cls :public TButton

private:

char Text[80];
RECT BRect;
HBITMAP hBitmapl;
HBITMAP hBitmap2;

protected:

virtual void ODADrawEntire(DRAWITEKSTRUCT _FAR & DrawInfo);
virtual void ODAFocus(DRAWITEMSTRUCT _FAR & DrawInfo);
virtual void ODASelect(DRAWITEMSTRUCT _FAR & DrawInfo);
virtual void DrawFraxne(HDC hDC, RECT Rect, BOOL Selected);
virtual void WriteText(HDC hDC, LPSTR Text);
virtual void PutBitznap(HDC hDC, BOOL Pressed FALSE);

public:

Button2Cls (PTWindowsObject AParent,
int AnId,
LPSTR AText,
LPSTR BitmaplName,
LPSTR Bitmap2Name,

int H,
BOOL IsDefault,
PTModule AModule = NULL);

-Button2Cls o;

#endif __BUTTON2_H

Listing A.3: COMMAND.H header file

1/ ~command -h

//header file for CommnandWndCls,
/ / FireCommands WndCls,
// InfoWndCls,
II SubFireCallWndCls, and
II ChronoWndCls classes

#ifndef __COMMANDH
def ine __COMMANDH

//note that the following code is executed only

73

//if this file has not been previously included

#include Ifire.h'

#define MAXVLINE 6
#define MAXHLINE 8
#define IDSEND 100
#define IDFIRE 101
#define IDINFO 201
#define ID_FIRECOMMANDS 301
#define ID-SUBFIRECALL 401

#define IDCHRONO 501
#define IDWHENREADY 502
#define IDATMYCO!O4AND 503
#define IDATTIME 504
#define IDAFTERTIME 505

_CLASSDEF (CommandWndCls)
_CLASSDEF (FireCommandsWndCls)
-CLASSDEF (InfoWndCls)
_CLASSDEF (SubFireCallWndCls)
-CLASSDEF (ChronoWndCls)

/1class ConmmandWndCls

/1Purpose : Hosts the other child windows.

IINotes :It has one more constructure which is encapsulated as
// protected. It is suppossed to be used only by its sub
II classes.

1/Copyright: Copyright (c) 1993, Mustafa ESER
/1 All Rights Reserved

class CommandWndCls : public TWindow

private:

RECT WndRect;
PFireCommandsWndCls FireCoxnmandsWnd;
PlnfoWndCls InfoWnd;
PSubFireCallWndCls SubFireCallWnd;
PChronoWndCl1s ChronoWnd;
PButton2Cls ButtonSend;
PButton2Cls ButtonFire;
PButton2Cls ButtonFireCommands;
PButton2Cls ButtonInfo;
PButton2Cls ButtonSubFireCall;
PButton2Cls ButtonChrono;

public:

CommandWndCls (PT~indowsObj ect AParent,

LPSTR ATitle,

74

int y,
int dX,
int dY);

-ComruandWndCls U;
virtual void SetupWindowo;
virtual void Paint(HDC PaintDC, PAINTSTRUCT&);
virtual void Send(RTMessage) = [ID_FIRST + ID_SEND];
virtual void Fire(RTMessage) = [ID_FIRST + ID_FIRE];
virtual void FireCoinmands(RTMessage) = [IDý_FIRST + IDFIRECOJMdANDS];
virtual void Info(RTMessage) = [IDFIRST + IDINFO];
virtual void SubFireCall(RTMessage) = (ID_FIRST + ID_SUBFIRECALL];
virtual void ActivateChronoxneter(long dT);

protected:

ComnmandWndCls (PTNindowsabject AParent,

LPSTR ATitle);

IIclass FireComrnandsWndCls

IIPurpose Display fire commands for each gun which is to fire.

/1Notes

IICopyright: Copyright (c) 1993, Mustafa ESER
// All Rights Reserved

class FireComnmandsWndCls tpublic TWindow~

private:

RECT WndRect;
mnt VLine[MAXVLINE-l];//x coordinates of vertical lines/borders
int HLine[MAXHLINE+l);//y coordiantes of horizantal lines/borders

public:

FireCommandsWndCls (PTWindowsabject AParent,
LPSTR ATitle,

int dX,
int dY);

-FireCommandsWndCls U;
virtual void SetupWindowo;
virtual void Paint(HDC PaintDC, PAINTSTRUCT&);

1/class InfoWndCls

IIPurpose : Displays fire call, fire order and message to observer
II messages after they have been set.

75

//
I/ Notes
//
1/ Copyright: Copyright (c) 1993, Mustafa ESER
// All Rights Reserved

class InfoWndCls : public TWindow(
private:

RECT WndRect;

public:

InfoWndCls(PTWindowsObject AParent,
LPSTR ATitle,
int X, int Y, int dX, int dY);

-InfoWndCls);
virtual void SetupWindow();
virtual void Paint(HDC PaintDC, PAINTSTRUCT&);

1;

II class SubFireCallWndCls
//
// Purpose : Displays subsequent fire calls.
I-
1/ Notes
//
// Copyright: Copyright (c) 1993, Mustafa ESER
// All Rights Reserved

class SubFireCallWndCls : public TWindow

private:

RECT WndRect;

public:

SubFireCallWndCls(PTWindowsObject AParent,
LPSTR ATitle,
int X, int Y, int dX, int dY);

-SubFireCallWndCls();
virtual void SetupWindow);
virtual void Paint(HDC PaintDC, PAINTSTRUCT&);

// class ChronoWndCls
//
// Purpose : Displays a digital chronometer for seting the firing
// time. It also instantiates the firing if it is a timed
// firing.
//
// Notes : Windows 3.1 allows only 16 clocks to work simultaneously,
// each OFIRE program executes one already.

76

/1Copyright: Copyright (c) 1993, Mustafa ESER
/1 All Rights Reserved

class ChronoWndCls : public TWindow

private:

PTBRadioBut ton RadioWhenReady;
PTBR~dioBut ton RadioAtMyComniand;
PTBRadioBut ton RadioAtTime;
PTBRadioBut ton RadioAfterTiine;
RECT WndRect;
WORD w'rimer;
WORD wElapse;
long dTinie;
mnt Hour;
mnt Minute;
int Second;

public:

ChronoWndCls (PTWindowsobject AParent,
LPSTR ATitle,

mnt dX,
int dY);

-ChronoWndCls o;
virtual void SetupWindowo;
virtual void Paint(HDC PaintDC, PAINTSTRUCT&);
virtual void WMTimner(RTMessage) = [NMFIRST + WMTIMER];
virtual void WhenReady(RTMessage) = f IDFIRST + IDWHENREADYI;
virtual void AtMyCommarnd(RTMessage) = [IDý_FIRST + IDATMYCOJM4AND);
virtual void AtTirne(RTMessage) = [ID_-FIRST + ID_-A'PrIME];
virtual void AfterTirne(RTMessage) = [IDFIRST + IDAFTERTIME];
virtual void StartCountDown(long dT);

#endif __CM4NDH

Listing A.4: FIRE.H header file

1/ fire.h

IIheader file for dialog class declerations which are:
/1 FireCallDlgCls,
II PolarWndCls,
II ShiftWndCls,
// GridWndCls,
II SuppressionWndCls,
// FirearderDlgCls,
II MTODlgCls,
/1 SubFireCallDlgCls,

77

// TOTAtTimeDlgCls,
/ / TOTAfterTimeDlgCls.

#ifndef _FIRE__H
define _FIREH

#ifdef __BORLANDC
// PC-specific includes
include <owl.h>
include <edit.h>
include <listbox.h>
include <combobox.h>
include <scrollba.h>
include <dialog.h>
include <bwcc.h>
include <button.h>
include <string.h>
include <bchkbox.h>
include <bradio.h>
#endif

#ifdef Unix
1/ UNIX-specific includes
#endif

#include "button2.h"
#include Idbtarget.h'
#include "dbgun.h"

//firecall dialog
#define ID_FIREORDER 106
#define IDVIEW 105
#define IDFROM 107
#define ID_MISSIONTYPE 108
#define IDSIZE 109
#define IDPOLAR 110
#define IDSHIFT i1
#define IDGRID 112
#define IDSUPPRESSION 113
#define IDDESCRIPTION 129

#define IDTARGETNO i11

#define ID_DIRECTION 101
#define ID_DISTANCE 102
#define ID_UPDOWN 103
#define ID_SHIFTFROM 104
#define IDRIGHTLEFT 105
#define IDADDDROP 106
#define ID_ZONE 107
#define ID_EAST 108

78

#define ID._NORTH 109
#define IDý_HEIGHT 110

I/into dialog
#define ID__MT 101
#define ID_PROCESS 110
#define ID-tJNITrOFIRE 107
#define ID_GUNLIST 119
#define ID_ADJUSTINGELEMENT 108

I/sub-fire call dialog
#define IDDEVIATION 101
#define IDDISTANCE 102
#define ID_HOB 103

#define ID_HOUR 701
#define IDý_MINUTE 702
#define IDSECOND 703

_CLASSDEF (PolarWndCls)
_CLASSDEF (ShiftWndCls)
_CLASSDEF (GridWndCls)
_CLASSDEF (Suppress ionWndCls)

1/class FireCallDlgCls

IIPurpose :Demonstrates FireCall dialog box

1/Notes :It work with Paradox Engine, make sure related *.dll
// files are on path.

1/Copyright: Copyright (c) 1993, Mustafa ESER
II All Rights Reserved

class FireCallDlgCls :public TDialog

private:

RECT cWnd;
PPolarWndCls PolarWnd;
PShiftWndCls ShiftWnd;
PGridWndCls GridWnd;
PSuppressionWndCls Suppress ionWnd;
PTComboBox ComboFrom; I/source of fire call
PTComboBox ComboType; I/type of mission
PTComboBox ComboSize; I/size of element for effect

public:
FireCallDlgCls (PTWindowsObject AParent,

LPSTR ANaxne);
-FireCallDlgCls U;
virtual void SetupWindowo;
virtual void RadioPolar(RTMessage) =[IDýFIRST + ID_-POLAR];
virtual void RadioShift(RTMessage) =[ID-FIRST + ID_-SHIFT];
virtual void RadioGrid(RTMessage) =[ID-FIRST + ID_-GRID);
virtual void RadioSuppression(RTMessage)=[ID FIRST + IDSUPPRESSION];
virtual void ButtonOrder(RTMessage) = [IDFIRST + ID_-FIREORDER];
virtual void ButtonView(RTMessage) = [ID-FIRST + IDVIEW];
virtual void UpdateFromo;

79

virtual void UpdateSize();
virtual void UpdateType();
virtual void UpdateTargetDatabase();

// class PolarWndCls
//

1/ Purpose Child window for FireCallDlgCls.
// Displays polar location type controls.
//
1/ Notes
/-
// Copyright: Copyright (c) 1993, Mustafa ESER
// All Rights Reserved

class PolarWndCls : public TWindow
(
private:

RECT WndRect;
PTEdit EditDirection;
PTEdit EditDistance;
PTEdit EditUpDown;

public:

PolarWndCls(PTWindowsObject AParent,
LPSTR ATitle,
int, int, int, int);

-PolarWndCls();
virtual void SetupWindow(;
virtual void Paint(HDC hDC, PAINTSTRUCT &);
virtual void SetLocValues(;

1;

// class ShiftWndCls
//
II Purpose Child window for FireCallDlgCls.
// Displays shift location type controls.
//
/1 Notes
//
// Copyright: Copyright (c) 1993, Mustafa ESER
// All Rights Reserved

class ShiftWndCls : public TWindow
{
private:

RECT WndRect;
PTComboBox ComboFrom;
PTEdit EditDirection;
PTEdit EditRightLeft;
PTEdit EditAddDrop;

80

PTEdit EditUpDown;

PDBTargetCls DETargets;

public:

ShiftWndCls (PTWindowsObject AParent,
LPSTR ATitle,
int, int, int, int);

--ShiftWndCls o;
virtual void SetupWindowo;
virtual void Paint(HDC hDC, PAINTSTRUCT&)
virtual void TargetNo(RTMessage) = [ID.FIRST + IDSHIFTFROMJ;
virtual void SetLocValueso;
virtual BOOL UpdateCornboFrom();

IIclass GridWndCls

IIPurpose :Child window for FireCallDlgCls.
/1 Displays grid location type controls.

IINotes

/1Copyright: Copyright (c) 1993, Mustafa ESER
II All Rights Reserved

class GridWndCls :public Whindow

private:

RECT WndRect;
PTEdit EditZone;
PTEdit EditEast;
PTEdit EditNorth;
PTEdit EditAltitude;
PTEdit EditDirection;

public:

GridWndCls (PTWindowsObject AParent,
LPSTR ATitle,
int int, int, int);-

-GridWndCls o;
virtual void SetupWindow();
virtual void Paint(HDC hDC, PAINTSTRUCT&)
virtual void SetLocValueso;

/1class SuppressionWndCls

IIPurpose :Child window for FireCallDlgCls.
// Displays suppression location type controls.

IINotes

81

1/Copyright: Copyright (c) 1993, Mustaf a ESER
/1 All Rights Reserved

class SuppressionWndCls :public TWindow

private:

RECT WndRect;
char Zone(5];
long East;
long North;
long Height;
PTCoxnboBox CornboTargetNo;
PTEdit EditDirection;
PDBTargetCls DBTargets;
char Description[80];

public:

SuppressionWndCls (PTWiridowsObject AParent,
LPSTR ATitle,
int, int, int, int);

-SuppressionWndCls o;

virtual void SetupWindowo;
virtual void Paint(HDC' hDC, PAINTSTRUCT&)
virtual void TargetNo(RTMessage) = [ID_FIRST + ID_TARGETNOJ;
virtual void SetLocValueso;
virtual BOOL UpdateCoznboTargetNo o;
virtual char *GetTargetDescriptionoL;

/1class FireOrderDlgCls

/1Purpose : Demonstrates FireOrder dialog box

IINotes : It work with Paradox Engine, make sure related *.dll
II files are on path.

1/Copyright: Copyright (c) 1993, Mustafa ESER
/1 All Rights Reserved

class FireOrderDlgCls : public TDialog

private:

int MainGun;
int GunNo(8];
char Zone(8][3];
long East[8];
long North[8];
long Height(8];
PTComboBox ComboUnitToFire;
PTListBox ListGuns;
PTBut ton ButtonAdjust ingElement;
PDBGunCls DBGuns;

public:

82

FireOrderDlgCls(PTWindowsObject AParent,
LPSTR AName);

-FireOrderDlgCls();
virtual void SetupWindow);
virtual void MTO(RTMessage) =[ID_FIRST + IDMTO);
virtual void ProcessForFire(RTMessage) =[ID_FIRST + IDPROCESS];
virtual void UnitToFire(RTMessage) =[ID_FIRST + IDUNITTOFIRE);
virtual void AdjustingElement(RTMessage)=[IDFIRST +

IDADJUSTINGELEMENT];
virtual BOOL UpdateComboUnitToFire();
virtual BOOL UpdateListGuns(;
virtual void CollectDatao;

// class MTODlgCls
//

// Purpose Demonstrates message to observer dialog box
//
// Notes : It work with Paradox Engine, make sure related *.dll
// files are on path.
//
// Copyright: Copyright (c) 1993, Mustafa ESER
// All Rights Reserved

class MTODlgCls : public TDialog

public:

MTODlgCls(PTWindowsObject AParent,
LPSTR AName);

-MTODlgCls);
virtual void SetupWindow()

virtual void Ok(RTMessage) = [IDFIRST + IDOK];
virtual void Cancel(RTMessage) = [IDFIRST + IDCANCEL];

II class SubFireCallDlgCls
/-
II Purpose : Demonstrates subfire call dialog box
//
// Notes : It work with Paradox Engine, make sure related *.dll
// files are on path.
//
1/ Copyright: Copyright (c) 1993, Mustafa ESER
/1 All Rights Reserved

class SubFireCallDlgCls : public TDialog
(
private:

PTEdit EditDeviation;
PTEdit EditDistance;
PTEdit EditHOB;

83

PTButton ButtonProcess;

public:

SubFireCallDlgCls(PTWindowsObject AParent,
LPSTR AName);

-SubFireCallDlgCls();
virtual void Process(RTMessage) = (ID_FIRST + ID_PROCESS];
virtual void Cancel(RTMessage) = [ID_FIRST + IDCANCEL];
virtual void Help(RTMessage) = [ID_FIRST + IDHELP];

//
II class TOTAtTimeDlgCls
i/
// Purpose : Demonstrates (time on target) At Time dialog box
//
// Notes : It work with Paradox Engine, make sure related *.dll
// files are on path.
//
// Copyright: Copyright (c) 1993, Mustafa ESER
// All Rights Reserved
//
class TOTAtTimeDlgCls : public TDialog
(
private:

PTEdit EditHour;
PTEdit EditMinute;
PTEdit EditSecond;

public:

TOTAtTimeDlgCls(PTWindowsObject AParent,
LPSTR AName);

-TOTAtTimeDlgCls();
virtual void SetupWindow(;
virtual void Ok(RTMessage) = [IDFIRST + IDOK];
virtual void Cancel(RTMessage) = [IDFIRST + IDCANCEL];
virtual void Help(RTMessage) = (ID_FIRST + IDHELP];

//
II class TOTAfterTimeDlgCls
//
ii Purpose : Demonstrates (time on target) After Time dialog box
//
// Notes : It work with Paradox Engine, make sure related *.dll
// files are on path.
//
/1 Copyright: Copyright (c) 1993, Mustafa ESER
// All Rights Reserved
//
class TOTAfterTimeDlgCls : public TDialog
(
private:

84

PTEdit EditHour;
PTEdit EditMinute;
PTEdit EditSecond;

public:

TOTAfterTimeDlgCls (PTWindowsObject AParent, LPSTR AName);
-TOTAfterTimeDlgCls o;
virtual void SetupWindowo;
virtual void Ok(RTMessage) = [ID...FIRST + IDOK];
virtual void Cancel(RTMessage) = [IDFIRST + IDCANCEL];
virtual void Help(RTMessage) = [1D..FIRST + IDHELP];

#endif __FIRE__H

Listing A.S: GLOBALS.H header file

II globals .h

IIheader file for global variables, objects and
// ComputationCls

#ifndef __GLOBALS__H
define __GLOBALS__H

#include <string.h>
#include "'dbtbl-f.h'

#define SUCCESS 1
#define FAIL 0

enurn MissionType (InADJUSTFIRE,
mFIREFOREFFECT,
mSUPPRESSION,
mIMMOEDIATESUPPRESS ION,
mIMMEDIATESMOKE);

enum LocationType (POLAR,
SHIFT,
GRID,
SUPPRESSION);

enum Sheaf Type (CONVERGED,
PARALLEL,

85

SPECIAL,
OPEN);

enum TimingType (WHENREADY,
ATMYCOMMAND,
ATTIME,
AFTERTIME);

//struct Gun
//
I/ Purpose Holds information for a gun
//
II Notes
//
II Copyright: Copyright (c) 1993, Mustafa ESER
/1 All Rights Reserved

struct Gun
{

int GunNo;

//gun location
char Zone[5];
double East;
double North;
double Height;

//firing command elements
double Timing;
double Deflection;
double Elevation;
double Quadrant;

//target-hit info
char HitZone[5];
double HitEast;
double HitNorth;
double HitHeight;
double HitRange;
double HitDeflection; I/chart deflection
double HitAzimuth; //gun-hit point azimuth

//gun general info
double CommonOrientation;

//_CLASSDEF(ComputationCls)

// class ComputationCls
I/
// Purpose : Makes all the computations for a gun battery fire direction
//
1/ Notes : It works with Paradox Engine, so necessary *.dll files
/I should be on path.
//
II Copyright: Copyright (c) 1993, Mustafa ESER
// All Rights Reserved
//

86

class ComputationCis

private:

WStr Fir ingTableName;
WStr F'iringCharge;
PDBTableFCls DBTableF;

public:

char BatteryNaxne[3J;
char CallLine(4] [80];
char OrderLine[80];
char MTOLine(80];
char SubCallLine[50];

//observer information
char ObserverName [10];
char observerZone[10];
double ObserverEast;
double ObserverNorth;
double ObserverHeight;
double OTDirection;

I/target location before adjustment
char IniTargetZone[3];
double IniTargetEast;
double IniTargetNorth;
double IniTargetHeight;
double IniTargetRange; I/for main gun
double IniTargetDeflection;Ilfor main gun
I/target location after adjustment
char CurrTargetZone[3];
double CurrTargetEast;
double CurrTargetNorth;
double CurrTargetHeight;

//target location settings

I/polar
double PolarDistance;
double PolarUpDown;

I/grid
char GridZone[3J;
double GridEast;
double GridNorth;
double GridHeight;

I/shift
chai ShiftFrom[l0J;
char ShiftZone[l0J;
double ShiftEast;
double ShiftNorth;
double ShiftHeight;
double ShiftRightLeft;
double ShiftAddDrop;
double ShiftUpDown;

I//suppress ion
char SuppTargetNo[10];

87

char Description[l28];

char Category[80];

//fire cosmmand settings
mnt NoOfPiecesToFollow;
//current values
char CurrFrom[lO];
char CurrMissioriTypetSO];
char CurrSize[lO];
LocationType CurrLocat ionType;
Sheaf~ype CurrSheaf;

//gun parameters
Gun Guns[8];
int MainGun;
double AzimuthOfFire;

/I/gun - ammo
double BurstDiameter;

//fire commands buffers
int FiredNo;

ComputationCls 0;
-ComputationCis 0;

virtual void ComputeHitCoorso;
virtual void ComputeChartValues 0;
virtual void ComputeRangeAzimuth(double xl,

double yl,
double x2,
double y2,
double &Range,
double &Azimuth);

virtual void ComputeCoordinate(double xl,
double yl,
double Range,
double Azimuth,
double &x2,
double &y2);

void SetFiringTableName(WStr FTName);
WStr GetFiringCharge 0;
BOOL ComputeFiringCharge 0;
BOOL ComputeElevations 0;
BOOL ComputeFiringValues 0;

void Reseto;

#endif ___GLOBALS___H

Listing A.6: REPORT.H header file

88

// report.h//
// header file for the classes ReportWndCls,
/1 TextWndCls

#ifndef _REPORT_H
define _REPORT_H

// Note the following code is only executed if
// this file has not been previously included

#include Ifire.hO

#define ID_PRINT 101

_CLASSDEF(ReportWndCls)
_CLASSDEF(TextWndCls)

II class ReportWndCls
//
// Purpose Hosts a canvas window which displays the firig report
//
II Notes
//
// Copyright: Copyright (c) 1993, Mustafa ESER
/1 All Rights Reserved

class ReportWndCls : public TWindow

private:

RECT WndRect;
PTextWndCls TextWnd;
PButton2Cls ButtonPrint;

public:

ReportWndCls(PTWindowsObject AParent,
LPSTR ATitle,
int X,
int Y,
int dX,
int dY);

-ReportWndCls();
virtual void SetupWindow(;
virtual void Paint(HDC PaintDC, PAINTSTRUCT&);
virtual void Print(RTMessage) = [IDFIRST + ID_PRINT];

1;

89

//:class TextWndCls
//

I/ Purpose Serves as a canvas to display the firing report
//
// Notes//
// Copyright: Copyright (c) 1993, Mustafa ESER
// All Rights Reserved

class TextWndCls : public TWindow(
private:

RECT WndRect;

public:
TextWndCls(PTWindowsObject AParent,

LPSTR ATitle,int X,
int Y,
int dX,
int dY);

-TextWndCls();
virtual void SetupWindowo;
virtual void Paint(HDC PaintDC, PAINTSTRUCT&););

#endif _REPORT_H

Listing A.7: SELECT.H header file

//
// select.h//
// header file for the class SelectionWndCls/***~***************

#ifndef _SELECT_H
define _SELECT_H

II Note the following code is only executed if
// this file has not been previously included

#include Ifire.ho
#include Ocommand.h'
#include abursts.h'
#include "report.h"

90

#define IDý_EXIT 101
#define ID_ýHELP 102

//from fire.cpp
extern PCommandWndCls CornmandWnd;
extern PBurstsWrxdCls BurstsWnd;
extern PReportWndCls ReportWnd;

_CLASSDEF (SelectionWndCls)

/1class SelectionWndCls

IIPurpose Displays notebook tab-stops to select different windows.

//Notes

IICopyright: Copyright (c) 1993, Mustafa ESER
II All Rights Reserved

class SelectionWndCls : public TWindow

private:

PTWindowsObject MainWnd;
RECT WndRect;
POINT IndexTab[3] (4];
short CurrlndexTab;
PButton2Cls ButtonExit;
PButton2Cls ButtonHelp;

public:

SelectionWndCls (PTWindowsobject AParent,
LPSTR ATitle,
int
nt Y
imt dX,
int dY);

-Select ionWndCls U;
virtual void SetupWindowo;
virtual void Paint(HDC PaintDC, PAINTSTRUCT&);
virtual void WMLButtonDown(TMessage &) = (WM__FIRST + WMC_LBUTTONDOWN];
virtual void Exit(RTMessage) = [IDý_FIRST + ID_EXIT];
virtual void Help(RTMessage) = [ID__FIRST + ID_HELP];

#endif

91

APPENDIX B. (OCHART HEADER FILES LISTINGS)

Listing B.I: ABSLIST.H header file

// abslist.h//
1/ header file for the class genAbstractList

#ifndef _ABSLIST_H
define _ABSLIST_H

//note that the following code is executed only
//if this file has not been previously included

#define ALLOCATE_ERROR "Dynamic allocation error"

enum boolean (false, true 1;

typedef char string80[81];

// template class genAbstractList
//
II Purpose : implements an abstract class of linked lists with
/1 the following operations and features:
//
// > nodes with duplicate keys can be allowed.
// > insert new node.
II > search for a node with a specific occvrrence
// of a key.
// > delete a node with a specific occurrence of a key.
I/ > traverse the nodes of the lists.
II the user to modify them.
//
I/ Notes
//
II Copyright: Copyright (c) 1993, Mustafa ESER
II All Rights Reserved
//
template<class T>
class genAbstractList
{
protected:

unsigned listSize; II number of nodes
boolean overwrite; II overwrite data flag
boolean hasDuplicate; II duplicate-key flag
string8O errorMessage; // error message

92

public:

//state query methods
boolean isEmpty()(

return (listSize == 0) ? true : false;)

unsigned getListSize()
{

return listSize;)

char* getErrorMessage()(
string80 s;
strcpy(s, errorMessage);
errorMessage[O] = '\0';
return s;)

//object manipulation methods
genAbstractList()
()

virtual boolean insert(T&)

return false;

virtual boolean remove(T&, unsigned occur = 1)
(

return false;I

virtual boolean search(T&, unsigned occur = 1)
{

return false;)

virtual boolean visitFirstNode(T&)
{

return false;
9

93

virtual boolean visitNextNode(T&)
(

return false;)

virtual void clear()()
);

#endif _A"SLIST_H

Listing B.2: CHART.H header file

// chart.h
//
// header file the classes GridSetupDlgCls
// TargetSetupDlgCls
// GunSetupDlgCls
/1 NewEntryDlgCls
// NewFromEntryDlgCls
// GunInputDlgCls
// TargetInputDlgCls
// TargetDBDlgCls
// GunDBDlgCIs
/***

#ifr.def _CHART_H
define _CHART_H

//note that the following code is executed only
//if this file has not been previously included

#include <owl.h>
#include <edit.h>
#include <listbox.h>
#include <combobox.h>
#include <dialog.h>
#include <bwcc.h>
#include <button.h>
#include <string.h>
#include <static.h>
#include <scrollba.h>
#include <bchkbox.h>
#include <bradio.h>

#include Idefines.h"
#include 'globals.h,

94

#include Itargetdb.h,
#include 'gundb.h,

IIclass GridSetupDlgCls

IIPurpose Displays grid setup dialog box.

IINotes

IICopyright: Copyright (c) 1993, Mustafa ESER
1/ All Rights Reserved

class GridSetupDlgCls : public TDialog

private:

PTEdit EditZone;
PTEdit EditLeft;
PTEdit EditRight;
PTEdit EditBottom;
PTEdit EditTop;
PTComboBox ComboDistance;
PTComboBox ComboScale;
PTCheckBox CheckShowcrid;
PTCheckBox CheckShowNorth;

public:

GridSetupDlgCls (PTWindowsObject AParent, LPSTR AName);
-GridSetupDlgCls o;
virtual void SetupWindow();
virtual void Ok(RTMessage) = [ID_FIRST + IDOK];
virtual void Cancel (RTMessage) = [ID_-FIRST + IDCANCEL);
virtual void Help(RTMessage) = [IDFIRST + IDHELP];

/1class TargetSetupDlgCls

/1Purpose :Displays target setup dialog box.

/1Notes

//Copyright: Copyright (c) 1993, Mustafa ESER
II All Rights Reserved

class TargetSetupDlgCls : public TDialog

private:

PTCheckBox CheckShowTargets;

public:

TargetSetupDlgCls(PTWindowsObject AParent, LPSTR ANaxne);

-TargetSetupDlgCls U;

95

virtual void SetupWindowo;
virtual void Ok(RThessage) = (ID...YIRST + IDOK];
virtual void Cancel(RTMessage) =[IDFIRST + IDCANCELJ;
virtual void Help(RTMessage) = [ID..YIRST + IDHELP];

/1class GunSetupDlgCls

IIPurpose Displays gun setup dialog box.

/1Notes

IICopyright: Copyright (c) 1993, Mustaf a ESER
II All Rights Reserved

class GunSetupDlgCls :public TDialog

private:

PTCoxnboBox ComboScale;
PTCheckBox CheckShowCoverings;

public:

GunSetupDlgClsCPTWindowsObject AParent, LPSTR AName);
-GunSetupDlgCls o;
virtual void SetupWindowC);
virtual void OkCRTMessage) = [IELFIRST + IDOK];
virtual void Cancel(RTMessage) = [ID-FIRST + IDCANCEL];
virtual void HelpCRTMessage) = [ID-FIRST + IDHELP];

1/class NewEntryDlgCls

/1Purpose Displays new entry dialog box.

IINotes

//Copyright: Copyright (c) 1993, Mustaf a ESER
/1 All Rights Reserved

'I

protected:

long NewX;
long NewY;
PTRadioButton RadioTarget;
PTRadioBut ton RadioGun;
PTRadioButton RadioRadar;
PTRadioButton RadioObservationPost;
PTRadioButton RadioRegPoint;
PTRadioButton RadioCheckMark;

96

public:

NewEntryDlgCls (PTNindowsobject AParent,
LPSTR AName,
long X
longY)

.-NewEntryDlgCls 0;
virtual void SetupWindowo;
virtual void Ok(RTMessage Msg) = [IDý_FIRST + IDOK];
virtual void Cancel(RThessage Msg) = [IDý_FIRST + IDCANCELJ;

IIclass NewFromEntryDlgCls

IIPurpose :Displays new from entry dialog box.

IINotes

1/Copyright: Copyright (c) 1993, Mustafa ESER
II All Rights Reserved

class NewFromEntryDlgCls public NewEntryDlgCls

private:

long FromX;
long FromY;
int OffAzimuth;
long Of fDistance;
PTEdit EditEast;
PTEdit EditNorth;
PTEdit EditAzimuth;
PTEdit EditDistance;

public:

NewFromEntryDlgCls (P'NindowsObject AParent,
LPSTR ANaine,
long X
long Y
int Azimuth,
long Distance);

-NewFroniEntryDlgCls 0;
virtual void SetupWindowo;
virtual void Ok(RTMessage Msg) = [ID_FIRST + IDOK];
virtual void Cancel(RTMessage Msg) = [ID_FIRST + IDCANCEL];

IIclass GunlnputDlgCls

1/Purpose :Displays gun input dialog box.

IINotes

IICopyright: Copyright (c) 1993, Mustafa ESER

97

II All Rights Reserved

class GunlnputDlgCls :public TDialog

private:

GunlDBCls aGun;
PTEdit EditEast;
PTEdit EditNorth;
PTEdit EditHeight;
PTEdit EditRange;
PTEdit EditLeft;
PTEdit EditRight;
PTEdit EditCosunonDef;
PTEdit EditOrientation;
rPIComboBox ComboBattalion;
PTComboBox ComboBattery;
PTComboBox ComboGun;
PTComboBox ComboGuriType;
PTBCheckBox CheckMainGun;

public:

GunlnputDlgCls (P'TWindowsObject AParent,
LPSTR AName,
long X
longY)

GunlnputDlgCls (PTWindowsObject AParent,
LPSTR AName,
GunDBCls Gun);

-GunInpu-.-gClso ;
virtual void SetupWindowo;
virtual void Ok(RTMessage Msg) = (IDý_FIRST + IDOK];
virtual void Cancel(RThessage Msg) = [IDý_FIRST + IDCAX4CEL];
virtual void Help(RTMessage Msg) = [ID_FIRST + IDHELP];

/1class TargetrInputDlgCls

IIPurpose :Displays target input dialog box.

1/Notes

IICopyright: Copyright (c) 1993, Mustafa ESER
1/ All Rights Reserved

class TargetlnputDlgCls : public TDialog

private:

TargetDBCls aTarget;
PTEdit EditTargetNo;
PTEdit EditEast;
PTEdit EditNorth;
PTEdit EditHeight;
PTEdit EditDescription;
PTComboBox ComboCategory;

98

public:

TargetlnputDlgCls (PTWindowsObject AParent,
LPSTR AName,
long
long ;

TargetlnputDlgCls (P"NindowsObject AParent,
LPSTR AName,
TargetDBCls Tar);

-Target InputDlgCls 0;
virtual void SetupWindow 0;
virtual void Ok(RThessage IMsg) = [ID_FIRST + IDOK];
virtual void Cancel(RThessage Msg) = [IDý_FIRST + IDCANCEL];
virtual void Help(RT(essage Msg) = [ID_FIRST + IDHELP];

//class TargetDBDlgCls

IIPurpose :Displays target database dialog box.

/1Notes

//Copyright: Copyright (c) 1993, Mustafa ESER
II All Rights Reserved

class TargetDBDlgCls :public TDialog

private:

PTListBox ListNames;
PTNindowsObj ect MainWnd;

public:

TargetDBDlgCls (PTWindowsObject AParent,
LPSTR AName);

-TargetDBDlgCls 0;
virtual void SetupWindowfl;
virtual void UpdateListBoxfl;
virtual void ButtonAdd(RTMessage) = (IDFIRST + IDADD];
virtual void ButtonDelete(RThessage) = (ID_FIRST + ID_DELETE];
virtual void ButtonDetail(RThestage) = (IDý_FIRST + IDL_DETAIL];
virtual void ButtonShow(RThessage) = [ID_.FIRST + ID_SHOW];
virtual void Cancel(RTMessage) = [ID_FIRST + IDCANCEL];
virtual void Help(RTMessage) = [ID_FIRST + IDHELP];

//class GunDBDlgCls

IIPurpose :Displays gun database dialog box.

IINotes

IICopyright: Copyright (c)'1993, Mustafa ESER
II All Rights Reserved

99

class GunDBDlgCls :public TDialog

private:

PTL~istBox ListNames;
P1¶Jindowsobj Oct KainWnd;

public:

GunDBDlgCls (PTNxndowsObject AParent,
LPSTR AName);

-GunDBDlgCls 0;
virtual void SetupWindow 0;
virtual void UpdateListBoxo;
virtual void ButtonAdd(RTMessage) = [IDFIRST + ID_..ADDJ;
virtual void ButtonDelete(RThessage) = [IDFIRST + IDDELETE];
virtual void ButtonDetail(RT1~essage) = [ID_.FIRST + 1D_.DETAIL];
virtual void EuttonShow(RTMessage) = I IDFIRST + IDSHOW];
virtual void Cancel(RThessage) = [ID_..FIRST + IDCANCEL];
virtual void Help(RTMessage) = (IDFIRST + IDHELP];

#endif __CHART_H

Listing B.3: DEFINES.I header file

II defines .h

/1header file for defines

#ifndef __DEFINES_H
define __DEFINES_H

//menu identifiers
#define CMTRAININGMODE 101
#define CM_EXITCHART 109
#define CM...INSERT 203
#define CMINSERTFROM 204
#define CMGRIDSETUP 303
#define CMTARGETSETUP 304
#define OLGUNSETUP 305
#define CMLSAVEONEXIT 309
#define CM. DATABASETARGET 401
#define CILDATABASEGUN 402
#def ine CK_.ABOUT 151

100

//info window menu identifiers
#define CM_SCALEONE 801
#define CZLSCALETWO 802
#define CMSCALETHREE 803
#define CMSCALEFOUR 804
#define CM_SCALEFIVE 805
#define CMSCALESIX 806

//Grid setup dialog window
#define ID_ZONE 112
#define IDIEFT 105
#define ID_BOTTOM 106
#define ID_RIGHT 107
#define ID_TOP 108
#define ID_DISTANCE 204
#define ID_SCALE 110
#define ID_SHOWGRIDLINES 101
#define ID_SHOWNORTHSIGN 102

//TargetSetupDlgCls dialog window
#define ID_SHOWTARGETS 110

//GunSetupDlgCls dialog window
#define ID_SHOWGUNCOVERINGS 101

//NewEntryDlgCls dialog window
#define ID_TARGET 101
#define ID_GUN 102
#define ID_RADAR 103
#define ID_OBSERVATIONPOST 104
#define ID_REGPOINT 105
#define ID_CHECKMARK 106

//NewFromEntryDlgCls dialog window
//it uses ideast, idnorth, id.target, id.gun, id_others as well
#define ID_EAST 201
#define ID_NORTH 202
#define ID_AZIMUTH 203
#define ID_OFFDISTANCE 111

//GunInputDlgCls dialog window
#define ID_MAINGUN 999
#define ID_BATTERYNAME 1000
#define ID_GUNNO 1001
#define ID_BATTALIONNAME 1002
#define IDGUNTYPE 1005
#define ID_HEIGHT 1009
#define IDMAXRANGE 1010
#define ID_MAXLEFT 1011
#define ID_MAXRIGHT 1012
#define ID_CCA*40NDEF 1013
#define IDOR.ENTATION 1014

//TargetInputDlgCls dialog window
#define ID_TARGETNO 103
#define ID_DESCRIPTION 107
#define ID_CATEGORY 108

//TargetDBDlgCls dialog window
#define IDNAMES 101
#define ID_ADD 102

101

#define IDDELETE 103
#define ID_DETAIL 104
#define ID_SHOW 105

#endif __DEFINES_H

Listing B.4: GEN2LIST.H header Ale

II gen2list.h
//
// header file for the template classes
// genodList
II genUdList

#ifndef _GEN2LISTH

define _GEN2LIST_H

//note that the following code is executed only
//if this file has not been previously included

#include labslist.h°

II template struct dListNode
//
template<class T>
struct dListNode (

T dataNode;
dListNode<T> *prevPtr;
dListNode<T> *nextPtr;

I/
II template class genOc cist
//
II Purpose implements a classes of ordered doubly-linked lists
I/ with the following operations and features:
//
II > nodes with duplicate keys can be allowed.
// > insert new node.
// > search for a node with a specific occurrence
II of a key.
// > delete a node with a specific occurrence of a key.
1/ > traverse the nodes of the lists.
//

102

II Notes//
II Copyright: Copyright (c) 1993, Mustafa ESER
// All Rights Reserved

template<class T>
class genodList : public genAbstractList<T>
(
protected:

dListNode<T> *nodePtr, // node-visitation pointer
*tail, II pointer to the tail of list
*head; // pointer to head of list

T _bufl; II buffer

genOdList<T>& copy(genOdList<T>&);

public:

//state manipulation methods
genOdList()()

genOdList(boolean canoverwrite, boolean allowduplicate);

genOdList(genOdList<T>& dl)(
head = NULL; copy(dl);)

-genOdList ()
{

clearo;)

void setNodePtr(dListNode<T>* listPtr);

void setBufl(T& newBufl)
(

_bufl = newBufl;)

//state query methods
dListNode<T>* getNodePtr()
(

return nodePtr;)

//object manipulation methods

103

virtual boolean insert(T&);
virtual boolean r move(T& x, unsigned occur = 1);

virtual boolean search(T& x, unsigned occur = 1)
(

dListNode<T> *p;
return search(p, x, occur);)

virtual boolean search(dListNode<T>* &thisptr,

unsigned occur = 1);

virtual boolean visitFirstNode(T& x);
boolean visitPrevNode(T& x);
virtual boolean visitNextNode(T& x);
boolean visitLastNode(T& x);
virtual void clearo;

genOdList<T>& operator =(genOdList<T>& dl)(
copy(dl);
return *this;)

II template class genUdList
/-
// Purpose : implements a classes of unordered doubly-linked lists
I/ with the following operations and features:
//
// > nodes with duplicate keys can be allowed.
// > insert new node.
/1 > search for a node with a specific occurrence
// of a key.
1/ > delete a node with a specific occurrence of a key.
// > traverse the nodes of the lists.
//
It Notes
//
/1 Copyright: Copyright (c) 1993, Mustafa ESER
// All Rights Reserved

template<class T>
class genUdList : public genOdList<T>
(
public:

//state manipulation methods
genUdList() 0

genUdList(boolean canoverwrite, boolean allowduplicate)

104

:genOdList<T>(canoverwrite, allowduplicate)(1

genUdList(genUdList<T>& dl)(
head = NULL; copy(dl);)

//object manipulation methods
virtual boolean insert(T&);
virtual boolean search(dListNode<T>* &thisptr,

T& x,
unsigned occur = 1);

genUdList<T>& operator = (genUdList<T>& dl)(
copy(dl);
return *this;)

1;

#endif _GEN2LIST_H

Listng B.5: GLOBALS.H beader file

globals.h
//
II header file for the class GlobalCls and varibals
* **

#ifndef __GLOBALS_H
define __GLOBALS_H

//note that the following code is executed only
//if this file has not been previously included

#define FACTORSLIDE 250//the bigger the slower

II class GlobalsCls

/ Purpose : Holds the global objects and variables for the rest of

105

// the application.//
// Notes
//
// Copyright: Copyright (c) 1993, Mustafa ESER
// All Rights Reserved

class GlobalsCls(
public:

long WCLeft, WCiottom; //lower left most coors of world
long VisibleWCLeft; //left-most coordinate of screen
long VisibleWCBottom; //bottom-most coordinate of screen
long WCToRightExtension;//just for scroll bars limitations
long WCToTopExtension; //just for scroll bar limitations
int Distances[S];
int CurrDistanceIndex;
short DistancesCount;
long Scales[6/;
int CurrScaleIndex;
short ScalesCount;
BOOL ShowGrids;
BOOL ShowNorthArrow;
BOOL ShowTargets;
BOOL ShowGunCoverings;
BOOL SaveOnExit;
int MinScaleNDXForGuns;
short CurrBmpButtonSelection; //tool bar bitmap menu selections
long SlideAmount.; //scroll bar sliding amount in meters

//main window dimensions
int WidthMainWindow;
int HeightMainWindow;

//..
GlobalsCls()
I...

Reset();)

..
Reset()
II..

//firing chart extremum coordinates
WCLeft = 10000;
WCBottom = 10000;
VisibleWCLeft = WCLeft;
VisibleWCBottom = WCBottom;
WCToRightExtension = 50000;
WCToTopExtension = 50000;

Distances[O] = 100;
Distances(l] = 500;
Distances[2] = 1000;
Distances[3] = 2000;
Distances[4] = 5000;
CurrDistanceIndex = 2;

106

DistancesCount = 5;
Scales[0] = 2500;
Scalesfi] - 5000;
Scales(2] = 12500;
Scales[3] = 25000;
Scales(41 = 50000;
Scales[S] = 100000;
CurrScalelndex 2;
ScalesCount - 6;

ShowGrids = TRUE;
ShowTargets = TRUE;
ShowGunCoverings = TRUE;
MinScaleNDXForGuns = 1;
ShowNorthArrow = TRUE;
SaveOnExit = TRUE;

CurrBmpButtonSelection = -1; //means none of them is selected

SlideAmount = Scales(CurrScat1eIndex] /FACTORSLIDE;
WidtbMainWindow = 800;
HeightMainWindow = 600;

#endif __GQLOBALS_H

Listing B.6: GUNDB.H header file

II gundb h

IIheader file for the class GunDECis

#ifndef _GrUNDEH
define _GQUNDB_H

I/note that the following code is executed only
I/if this file has not been previously included

#include <string.h>

#define MAXNAMELEN 10
#define MAXMODELLEN 30

_CLASSDEF (GunDECis)

IIclass GunDBCls

107

// Purpose :Serves as database management class for gun database//
// Notes//
// Copyright: Copyright (c) 1993, Mustafa ESER
// All Rights Reserved

class GunDBCls
(
private:

char BattalionNamelMAXNAMELEN];
char BatteryName[MAXNAMELEN];
short GunNo;
long CoorEast;
long CoorNorth;
int Height;
BOOL MainGun;
char Model(MAXMODELLEN];
long MaxRange;
int MaxRightDeflection;
int MaxLeftDeflection;
int CommonOrientationDeflection;
int OrientationDeflection;

public:

//..
GunDBCls()

II...(
strcpy(BattalionName, 0*);
BatteryName[0] = NULL;
GunNo = 0;
CoorEast = 0;
CoorNorth = 0;
Height = 0;
MainGun = 0;
strcpy(Model, "[-]);
MaxRange = 0;
MaxRightDeflection = 0;
MaxLeftDeflection = 0;
CommonOrientationDeflection = 0;
OrientationDeflection = 0;

I,...
GunDBCls(char* Btn,

char* Btr,
int Gun,
long East,
long North,
int Height,
BOOL mGun,
char* Mod,
long Range,
int DefR,
int DefL,

108

mnt ConinofDef,
int Orientation)

I,...

stcyBtainae t)
strcpy(BattalioName, Btn);

GunNo = Gun;
CoorEast = East;
CoorNorth = North;
Height =Height;
MainGun = moun;
strcpy(Model, Mod);
MaxRange = Range;
MaxRightDeflection = DefR;
MaxLeftDeflection = DefL;
ConunonOrientationDeflection = ConunonDef;
OrientationDeflection = Orientation;

..

GunDBCls(const GunDBCls& T)
//..
//copy initializer

(tcyBtainae .atlo~m)
strcpy(BattalioName, T.BattalioName);

GunNo = T.GunNo;
CoorEast = T.CoorEast;
CoorNorth = T.CoorNorth;
Height = T.Height;
MainGun = T.MainGun
strcpy(Model, T.Model);
MaxRange = T.MaxRange;
MaxRightDeflection = T.MaxRightDeflection;
MaxLeftDeflection = T.MaxLeftDeflection;
CommonOrientationDeflection = T.CommononrientationDeflection;
OrientationDeflection = T.OrientationDeflection;

-GnBlI

//...

//asB~sigmn oprao
//..

GunDBCls& operator = (const GunDECis &T)
/1...

strcpy(BattalionNanme, T.BattalionName);
strcpy(BatteryName, T.BatteryName);
GunNo = T.GunNo;
CootEast = T.CoorEast;
CoorNorth = T.CoorNorth;
Height = T.Height;
MainGun = T.MainGun

109

strcpy(Model, T.Model);
MaxRange = T.MaxRange;
MaxRightDeflection = T.MaxRightDeflection;
MaxLeftDeflection = T.MaxLeftDeflection;
CouunonOrientationDeflection = T.CovmonOrientationDeflection;
OrientationDeflection = T.OrientationDeflection;
return *this;

//...
int operator < (GunDBCls& aGun)

..(
if(strcmp(BattalionName, aGun.BattalionName) < 0) (

return 1;
)else if(strcmp(BattalionName, aGun.BattalionName) == 0

if(strcmp(BatteryName, aGun.BatteryName) < 0) (
return 1;

)else if(strcmp(BatteryName, aGun.BatteryName) == 0
if(GunNo < aGun.GunNo

return 1;)
I
return 0;

..
int operator > (GunDBCls& aGun)
(...

if(strcmp(BattalionName, aGun.BattalionName) > 0) (
return 1;

)else if(strcmp(BattalionName, aGun.BattalionName) == 0
if(strcmp(BatteryName, aGun.BatteryName) > 0

return 1;
)else if(strcmp(BatteryName, aGun.BatteryName) == 0

if(GunNo > aGun.GunNo
return 1;

I
I
return 0;

..
int operator <= (GunDBCls& aGun)
/..

if(strcmp(BattalionName, aGun.BattalionName) <= 0) (
return 1;

)else if(strcmp(BattalionName, aGun.BattalionName) == 0
if(strcmp(BatteryName, aGun.BatteryName) <= 0

return 1;
)else if(strcmp(BatteryName, aGun.BatteryName) == 0) (

if(GunNo <= aGun.GunNo
return 1;

110

I
)

return 0;
)

int operator == (GunDBCls& aGun)
I,...

if(!strcmp(BattalionName, aGun.BattalionName))
if(!strcmp(BatteryName, aGun.BatteryName))

if(GunNo == aGun.GunNo)
return 1;

return 0;

//---functions to access the data members
char *GetBattalionName() (return BattalionName;)
char *GetBatteryName() (return BatteryName;)
short GetGunNo() (return GunNo;)
long GetCoorEast() (return CoorEast;)
long GetCoorNorth() (return CoorNorth;)
int GetHeight() (return Height;)
BOOL isMainGun() (return MainGun;)
char *GetModel() (return Model;)
long GetMaxRange() (return MaxRange;)
int GetMaxRightDeflection() (return MaxRightDeflection;)
int GetMaxLeftDeflection() (return MaxLeftDeflection;)
int GetCommonOrientationDeflection() (return

CommnonOrientationDeflection;)
int GetOrientationDeflection() (return OrientationDeflection;)

//---functions to set the data members
void SetBattalionName(char *in) (strcpy(BattalionName, in);)
void SetBatteryName(char *in) (strcpy(BatteryName, in);)
void SetGunNo(short in) (GunNo = in;)
void SetCoorEast(long in) (CoorEast = in;)
void SetCoorNorth(long in) (CoorNorth = in;)
void SetHeight(int in) (Height = in;)
void SetMainGun(BOOL in) (MainGun = in;)
void SetModel(char *in) (strcpy(Model, in);)
void SetMaxRange(long in) (MaxRange = in;)
void SetMaxLeftDeflection(int in) (MaxLeftDeflection = in;)
void SetMaxRightDeflection(int in) (MaxRightDeflection = in;)
void SetConmonOrientationDeflection(int in)

(CommonOrientationDeflection = in;)
void SetOrientationDeflection(int in) (OrientationDeflection =

in;)

//,....o..
void Reset()
//..........................
//resets all data members
(

111

BattalionNazme[O] = NULL;
BatteryName(O] = NULL;
GunNo, = 0;
CoorEast = 0;
CoorNorth = 0;
Height = 0;
MaiziGun = 0;
strcpy(Model, C-)
1(axRange = 0;
MaxRightDeflection = 0;
lMaxLeftDeflection = 0;
CoiunonOrientationDeflection = 0;
OrientationDeflection = 0;

#endif _2GUNDB_H

Listing B.7: INFO.H header file

II info.h

/1header file for the classes SelectionToolCls
II DistanceToolCls
II NewToolCl s
II NewTroolCl s
II SearchToolcls
1/ PickToolCis
II InfoWndCls
II ToolBarWndCls
II Canv,-sWndCls

#ifndef __INFOH
define __INFO_H

//note that the following code is executed only
//if this file has not been previously included

#include achart.ho

_CLASSDEF (Select ionToolCls)

IIclass SelectionToolCls

IIPurpose Base class for selection button classes.

IINotes

112

//
// Copyright: Copyright (c) 1993, Mustafa ESER
// All Rights Reserved

class SelectionToolCls
(
protected:

HCURSOR hCursor;

public:

SelectionToolCls() 0)
long FindDistance(long, long, long, long);
int FindAzimuth(long, long, long, long);

//abstract methods, which will be implemented in derived classes.
virtual void DoMouseDown(long, long) ()
virtual void DoMouseMove(long, long) (0
virtual HCURSOR GetCursor() (return hCursor;)
virtual void Reset() 0)1;

-CLASSDEF(DistanceToolCls)

I/ class DistanceToolCls//
// Purpose : Behaves for the distance button.//
// Notes

II Copyright: Copyright (c) 1993, Mustafa ESER
// All Rights Reserved
/ /-------------------------------------
class DistanceToolCls : public SelectionToolCls
(
private:

BOOL ClickedBefore;
long Xl, Yl;
long Distance;
long Azimuth;
HCURSOR hCursorl, hCursor2;

public:

DistanceToolCls(HCURSOR hCl, HCURSOR hC2);
virtual void DoMouseDown(long X, long Y);
virtual void DoMouseMove(long ', long Y);
virtual HCURSOR GetCursor(;
virtual void Reseto;1;

_CLASSDEF(NewToolCls)

I/ class NewToolCls
//

113

/I Purpose Behaves for the new tool button.I,
// Notes
//
// Copyright: Copyright (c) 1993, Mustafa ESER
// All Rights Reserved

class NewToolCls : public SelectionToolCls(
private:

HCURSOR hCursorl;

public:
NewToolCls(HCURSOR hCl);
virtual void DoMouseDown(long X, long Y);
virtual void DoMouseMove(long X, long Y);
virtual HCURSOR GetCursor() (return hCursorl;)
virtual void Reseto;

1;

_CLASSDEF(NewTToolCls)

// class NewTToolCls
II
// Purpose Behaves for the new from tool button./i
// Notes
//
I/ Copyright: Copyright (c) 1993, Mustafa ESER
I/ All Rights Reserved

class NewTToolCls : public SelectionToolCls
(
private:

BOOL ClickedBefore;
long Xl, Yl;
HCURSOR hCursorl, hCursor2;
long Distance;
Ant Azimuth;

public:

NewTToolCls(HCURSOR hCl, HCURSOR hC2);
virtual void DoMouseDown(long X, long Y);
virtual void DoMouseMove(long X, long Y);
virtual HCURSOR GetCursor();
virtual void Reset();

_CLASSDIY SearchToolCls)

// class SearchToolCls
//
// Purpose : Behaves for the search button.
//

114

// Notes//
// Copyright: Copyright (c) 1993, Mustafa ESER
// All Rights Reserved

class SearchToolCls : public SelectionToolCls(
private:

HCURSOR hCursorl;

public:

SearchToolCls(HCURSOR hCl);
virtual void DoMouseDown(long X, long Y);
virtual void DoMouseMove(long X, long Y);
virtual HCURSOR GetCursor() (return hCursorl;)
virtual void Reset();

_CLASSDEF(PickToolCls)

// class PickToolCls//
II Purpose : Behaves for the pick tool button.//
II Notes//
II Copyright: Copyright (c) 1993, Mustafa ESER
/I All Rights Reserved

class PickToolCls : public SelectionToolCls
(
private:

HCURSOR hCursorl;

public:

PickToolCls(HCURSOR hC1);
virtual void DoMouseDown(long X, long Y);
virtual void DoMouseMove(long X, long Y);
virtual HCURSOR GetCursor() (return hCursorl;)
virtual void Reset);

_CLASSDEF(InfoWndCls)

// class InfoWndCls
//
// Purpose : Displays the info area at the bottom of the window.//
// Notes
//
II Copyright: Copyright (c) 1993, Mustafa ESER
// All Rights Reserved

115

clams InfoWndCls public TWindow

private:

RECT WndRect;
PTScrollBar HorizantaiScroll;

public:

IrifoWndCls (PT~indowsObject AParent, LPSTR ATitle);
-InfoWndClso;
virtual void SetupWindow 0;
virtual void Paint(HDC PaintDC, PAINTSTRUCT&);
virtual void WMSize(7Message&);
virtual void WMLButtonDown(Thessage &Msg) = [WMCFIRST +

W)CLBU'XTONDOWN];
virtual void MenuONE(RT~essage) = [!CMFIRST + OCSCALEONEJ;
virtual void MenuTWO(RThessage) = ECK-FIRST + CKCSCALENWO);
virtual void MenuTHREE(RThessage) = [COQFIRST + OLSCALETHREE];
virtual void MenuFOUR(RThessage) = [CILFIRST + CKCSCALEFOUR];
virtual void MenuFIVE(RThessage) = (OCMFIRsT + OCMSCALEFIVE];
virtual void 14.nuSIX(RThessage) = [CMLFIRST + CKLSCALESIXJ;
virtual void W!OHScroll(RThessage Hsg);
virtual void Displaylnfo(char *);
virtual void DrawScaleButtono;

_CLASSDEF (ToolBarWndCls)

IIclass ToolBarWndCls

IIPurpose :Displays the tool bar area at the right of the window.

IINotes

IICopyright: Copyright (c) 1993, Mustafa ESER
II All Rights Reserved

class ToolBarWndCls : public Twindow

private:

RECT WndRect;
PTScrollBar VerticalScroll;
HBITMAP hBitmap[S];
HCURSOR hCursorFrom, hCursorTo, hCursorPick;
PSelectioriToolCls SelectionArray(5];

public:

ToolBarWndCls (PTWindowsObject AParent, LPSTR ATitle);
-ToolBarWndCls 0;
virtual void SetupWindow 0;
virtual void Paint(HDC PaintDC, PAIHTSTRUCT&);
virtual void WMSize(Thessage&);
virtual void WMVScroll(RTMessage Msg);
virtual void Wl'L~uttonDown(Thessage &Msg) = LWI.LFIRST +

WMLBUT'rONDOWN];

116

_CLASSDEF (CanvasWndCls)

IIclass CanvasWndCls

IIPurpose Displays the drawing area which holds targets, gun
II positions etc.

IINotes

IICopyright: Copyright (c) 1993, Mustafa ESER
II All Rights Reserved

class CanvasWridCls : public TWindow

private:

RECT WndRect;
HEITHAP TickMarkBmp;
HBITMAP TickMarkMask;

public:

CanvasWndCls (PTNindowsObject AParent, LPSTR ATitle);
-CanvasWndCls 0;
virtual LPSTR GetClassNajmeo;
virtual void SetupWindowo;
virtual void Paint(HDC PaintDC, PAINTSTRUCT&);
virtual void WMLButtonDown(Thessage &Msg) = WMLFIRST +

WMLBUTI'ONDOWN];
virtual void WM~tousel~ove(Tmessage &lMsg) = LIOLFIRST + WM-MOUSEMOVE);
virtual void WMSetCursor(Thessage &Msg) =[WMLFIRST + WMLSETCURSOR];
virtual BOOL ReadTargetData 0;
virtual BOOL ReadGunDatao;
virtual void Displayouns(HDC hDC);
virtual void DisplayGunLabels(HDC);
virtual void DrawGrids(HDC hDC, RECT Rect);
virtual void DisplayTargets(HDC hDC);
virtual void DisplayTargetLabels(HDC hDC);
virtual void DrawLocationLines(long, long);
virtual void TestConstraintso;

#endif __INFO_H

Listing B.8: TARGETDB.H header file

II targetdb.h

IIheader file for the class TargetDBCls

117

#ifndef .TARGETDBJIH
define _TARGETDBH

//note that the following code is executed only
//if this file has not been previously included

#include <string.h>

#defineMAXTARGTNOLBN10
#define MAXCOORLEN 10
#defineMAXDESLEN 50
#defineMAXCATLEN 50
#define MAXBUF 50

_CLASSDEF(TargetDBCls)

// class TargetDBCls//
// Purpose : Serves as database management class for target database.
//
// Notes
//
// Copyright: Copyright (c) 1993, Mustafa ESER
// All Rights Reserved

class TargetDBCls(
private:

char TargetNo[MAXTARGETNOLEN];
long CoorEast;
long CoorNorth;
int Height;
char Description[MAXDESLEN];
char Category[MAXCATLEN];

public:

//..
TargetDBCls()

..

TargetNo[0] = NULL;
CoorEast = 0;
CoorNorth = 0;
Height = 0;
Description[O] = NULL;
Category[O] = NULL;

..
TargetDBC1s(char* tn,

118

long ea,
long no,
int he,
char* des,
char* cat)

I,...

strcpy(TargetNo, tn);
CoorEast = ea;
CoorNorth = no;
Height = he;
strcpy(Description, des);
strcpy(Category, cat);

I,...
TargetDBCls(const TargetDBCls& T) //copy initializer
//...

strcpy(TargetNo, T.TargetNo);
CoorEast = T.CoorEast;
CoorNorth = T.CoorNorth;
Height = T.Height;
strcpy (Description, T.Description);
strcpy(Category, T.Category);

,...
-TargetDBCls()
//..

{)gti*I&'ý'rýtr**c*t r T

//..

/ /ass ignment operator

strcpy(TargetNo, T.TargetNo);
CoorEast = T.CoorEast;
CoorNorth = T.CoorNorth;
Height = T.Height;
strcpy(Description, T.Description);
strcpy(Category, T.Category);
return *this;

,..
mnt operator < (TargetDBCls& aTarget)
//...

return strcmp (GetTargetNo 0. aTarget .GetTargetNo 0) < 0;

119

int operator > (TargetDBCls& aTarget)
..(
return strcmp(GetTargetNoo, aTarget.GetTargetNoo) > 0;)

..
int operator <= (TargetDBCls& aTarget)

..(
return strcmp(GetTargetNoo, aTarget.GetTargetNoo) <= 0;)

..
int operator == (TargetDBCls& aTarget)

..(
return strcmp(GetTargetNoo, aTarget.GetTargetNoo) == 0;)

/---functions to access the data members
char* GetTargetNo() (return TargetNo;)
long GetCoorEast() (return CoorEast;)
long GetCoorNorth() (return CoorNorth;)
int GetHeight() (return Height;)
char* GetDescription() (return Description;)
char* GetCategory() (return Category;)
//---functions to set the data members
void SetTargetNo(char* tn) (strcpy(TargetNo, tn);)
void SetCoorEast(long east) (CoorEast = east;)
void SetCoorNorth(long north) (CoorNorth = north;)
void SetHeight(int height) (Height = height;)
void SetDescription(char* des) (strcpy(Description, des);)
void SetCategory(char* cat) (strcpy(Category, cat);)

...
void Reset()

..

TargetNo[0] = NULL;
CoorEast 0;
CoorNorth = 0;
Height = 0;
Description[0] = NULL;
Category[O] = NULL;

);

#endif _TARGETDB_H

120

APPENDIX C. (DATABASE HEADER FILES LISTIGS)

Lasting CA1: DBGUN.H header Wie

II dbgun. h

IIheader file for the class DBGunCls

#ifndef _DEGUN_H
define _DBGUN_H

#include IWStr.hf
include *Paradox. hw

#define MAXNAMELEN 10
#define MAXMODELLEN 30

_CLASSDEF (DBGunCls)

IIclass DBGunCls

IIPurpose :Performs database management for guns.
IINotes
//Copyright: Copyright (c) 1993, Mustafa ESER

II All Rights Reserved

class DBGunCls

private:

char BattalionName (MAXNAMELEN];
char BatteryName (MAXNAMELEN];
short GunNo;
long CoorEast;
long CoorNorth;
int Height;
BOOL MainGun;
char Model (MAXMODELLEN];
long MaxRange;
int MaxRightDef lect ion;
int MaxLeftDeflection;
int CommonOrientationDeflect ion;
int OrientationDeflection;
char FiringTableName[MAXNAMELEN];
//#14

//Paradox table info
ParadoxTable TableGuns;

121

int nFiolds;
LPSTR Names 114;
LPSTR Types[14];

protected:

void RecordToBufferfl;

public:

DBGunCls (LPSTR TableName);
-DBGunCis 0;

BOOL ReadFirsto;
BOOL ReadLast 0;
BOOL ReadNext 0;
BOOL ReadPrevo;
BOOL isTableEmpty 0;
BOOL isLasto;

BOOL AddRecord 0;
BOOL UpdateRecordo;
BOOL DeleteRecordo;
BOOL Search~yKey (char *Btn, char *Btr, int Gun);

void Reseto;

//functions to access the data members
char *GetBattalionName() (return BattalionName;)
void SetBattalio~nName(char *in) (strcpy(BattalionName, in);)

char *GetBatteryName() (return BatteryName;)
void SetBatteryName(char *in) (strcpy(BatteryName, in);)

short GetGunNo() (return GunNo;)
void SetGunNo(short in) (Gunlio = in;)

long GetCoorEast() (return CoorEast;)
void SetCoorEast(long in) (CoorEast = in;)

long GetCoorNorth() (return CoorNorth;)
void SetCoorNorth(long in) (CoorNorth = -in;)

mnt GetHeight() (return Height;)
void SetHeight(int in) (Height = in;)

BOOL isMainGun() (return MainGun;)
void SetMainGun(BOOL in) (MainGun = in;)

char *GetModel() (return Model;)
void SetModel(char *in) (strcpy(Model, in);)

long GetMaxRange() (return MaxRange;)
void SetMaxRange(long in) (MaxRange = in;)

mnt GetMaxRightDeflectiono((return MaxRightDeflection;)
void SetMaxLeftDeflection(int in) (MaxLeftDeflection = in;)

mnt GetMaxLeftDeflectiono((return MaxLeftDeflect ion;)
void SetMaxRightDeflection(int in) (MaxRightDef2.ection = in;)

122

int GetCommonOrientat ion()
(return CommonOrientationDeflection;)

void SetCommonOrientation(int in)
(ConunonOrientationDeflection = in;)

mnt GetOrientationDeflection() (return OrientationDeflection;)
void SetOrientationDeflection(int in) (OrientationDeflection = in;)

char *GetFiringTableNameo((return FiringTableName;)
void SetFiringTableNazne(char *fn) (strcpy(FiringTableName, fn) ;)

#endif _DEGUN_H

Listing C.2: DBTARGET.H header file

II ~dbtarget. h

1/header file for the class DBTargetCls

#ifndef _DETARGET_-H
define _DETARGETH

#include IWStr.hl
#include 'Paradox.ho

#define SUCCESS 1
#define FAIL 0
#define MAXTARGETNOLEN 10
#define MAXCOORLEN 10
#define MAXDESLEN 50
#define MAXCATLEN 50
#define MAXBUF 50

_CLASSDEF (DBTargetCls)

1/class DBTargetCls

IIPurpose Performs database management for targets.
IINotes
IICopyright: Copyright (c) 1993, Mustafa ESER

II All Rights Reserved

class DBTargetCls

private:

123

char TargetNo [HAXTARGETrNOLEN];
double CoorEast;
double CoorNorth;
double Height;
char Description (MAXJDESLENJ;
char Category (MAXCATLEN];

//Paradox table info
ParadoxTable TableTargets;
int nFields;
LPSTR Names[6];
LPSTR Types[6];

protected:

void RecordToBuffer 0;
void BufferToRecordo;

public:

DBTargetCls(LPSTR TableName);
-DETargetCls 0;

BOOL ReadFirsto;
BOOL ReadLasto;
BOOL ReadNext 0;
BOOL ReadPrey 0;
BOOL isTableEmpty 0;
BOOL isLast();

BOOL AddRecord 0;
BOOL UpdateRecord 0;
BOOL DeleteRecordo;
BOOL Search~yKey (char *Key);

void Reseto;

char *GetTargetNo() (return TargetNo;)
void SetTargetNo (char* tn) (strcpy (TargetNo, tn);)

double GetCoorEast() (return CoorEast;)
void SetCoorEast(double east)(CoorEast = east;)

double GetCoorNorth() (return CoorNorth;)
void SetCoorNorth(double north) (CootNorth = north;)

double GetHeight() (return Height;)
void SetHeight(double height) (Height = height;)

char *GetDescription() (return Description;)
void SetDescription (char* des) (strcpy (Description, des);)

char *GetCategory() (return Category;)
void SetCategory(char* cat) (strcpy(Category, cat);)

#endif _DETARGETý_H

124

Listing C.3: DBTBL..rd header file

I/ dbtbl-f .h//
// header file for the clas DBTable_F_Cls

#ifndef _DBTABLEF_H
define __DBTABLE_F_H

#include 'WStr.h"
#include 'Paradox.h-

_CLASSDEF(DBTableF_Cls)

// class DBTable_F_Cls//
// Purpose : Performs database management for Table F of firing table
// Notes
II Copyright: Copyright (c) 1993, Mustafa ESER
I/ All Rights Reserved

class DBTable_F_Cls
(
private:

double Range; //0
double Elevation; //l
double FSforGrazeBurst; //2
double DFSperlOmDecHOB; //3
double DRperlmilDElev; //4
double Fork; //5
double TimeOfFlight; //6
double AzimuthCorrDrift; //7
double AzimuthCorrCrossWind;//8
double MuzzleVelocityDec; //9
double MuzzleVelocityInc; //10
double RangeWindHead; //11
double RangeWindTail; //12
double AirTempDec; //13
double AirTempInc; //14
double AirDensityDec; //15
double AirDensityInc; //16
double ProjectileWeightDec; //17
double ProjectileWeightInc; //18

//Paradox table info
ParadoxTable Table_F;
int nFields;
LPSTR Names[18];
LPSTR Types[19];

125

protected:

void RecordToBuffero;

public:

DBTable_F_Cls(LPSTR TableName);
-DBTable_F_Ciso;

BOOL ReadFirsto;
BOOL ReadLast);
BOOL ReadNext 0;
BOOL ReadPrev);
BOOL isTableEmpty);
BOOL isLasto;

void Reseto;

double FindElevation(double range);

#endif __DBTABLEF_H

Listing C.4: PARADOX.H header file

//
// paradox.h

II header file for database engine inclusions

#ifndef PARADOX_H
define PARADOX_H

include <alloc.h>
include <string.h>
include "PdoxEnging.h'
include PdoxTable.h"
include "PdoxRecord.h"

// Note the following code is only executed if
// this file has not been previously included

char *GetParadoxError (int nError);

#endif

126

Listing CA5: PDOXENG.H header file

// pdoxeng.h
//
/I header file for the class SelectionWndCls

#ifndef ParadoxEngine_H
define ParadoxEngine-H

// Note the following code is only executed if
II this file has not been previously included

#include 'pxengine.h"

#ifdef __BORLANDC_
//PC computer specific includes

include <owl.h>
#endif

#ifdef Unix
// Unix computer specific includes

#endif

I/ class ParadoxEngine
//
// Purpose
//
// Notes
//
I/ Copyright: Copyright (c) 1993, Mustafa ESER
// All Rights Reserved

_CLASSDEF (ParadoxEngine)
class ParadoxEngine
(
public:

static Status;

ParadoxEngine (LPSTR szAPlication);
-ParadoxEngine (;

#endif ParadoxEngine_H

127

Listing C.6: PDOXREC.H header file
/ **

//
// Ipdoxrec.h//
I/ header file for the class ParadoxRecord

#ifndef ParadoxRecordH
define ParadoxRecord_H

N/ Note the following code is only executed if
// this file has not been previously included

#include <ctype.h>
#include 'PxEngine.h'
#include OWStr.h'

#ifdef __BOLANDC__
// PC computer specific includes
#include <owl.h>
#endif

#ifdef Unix
// Unix computer specific includes
#endif

_CLASSDEF (ParadoxTable)
_CLASSDEF (ParadoxRecord)
//

// class ParadoxRecord//
// Purpose
//
1/ Notes//
II Copyright: Copyright (c) 1993, Mustafa ESER
// All Rights Reserved
//-
class ParadoxRecord
(
private:

ParadoxTable ParentTable;

128

public:

RECORDHANDLE HRecord;
intStatus;

ParadoxRecord (ParadoxTable);
virtual -ParadoxRecord ();

void RawGet (void *, t BufferSize);
void RaPut (void *, t BufferSize);

WStr GetField (FIELDHANDLE FieldNumber);
WStr GetField (LPSTR FieldName);
void PutField (FIELDHANDLE FieldNumber, WStr);
void PutField (LPSTR FieldName, WStr);

mnt Update 0
mnt Add 0
mnt Read 0

#include 'PdoxTable .h-

#endif ParadoxRecord_H

Listing C.7: PDOXTAB.H header file

II Pdoxtab h

IIheader file f or the class ParadoxTable

/i n e /* ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** *

#ifdefin ParadoxTable_H

//Note the following code is only executed if
IIthis file has not been previously included

#include <DIR.H>
#include IWStr.hg
#include mpxengine.h,
#include mPdoxEngine.hf
#include PdoxRecordhf

#ifdef _BORLANDC_

129

IIPC computer specific includes
#includoecowl .h>
#*ndif

*ifdef Unix
// Unix computer specific includes
#endif

_CLASSDEF (ParadoxTable)

IIclass ParadoxTable

IIPurpose

//Notes

IICopyright: Copyright (c) 1993, Nustafa ESER
// All Rights Reserved

class ParadoxTable

public:

intStatus;
ParadoxRecord Record;
TABLEHANDLE H.Table;

ParadoxTable (LPSTR TableName,
mnt Index~ield = 0,
int nFields = 0,
char *Names[] =NULL,
char *Types(1 = NULL);

virtual -ParadoxTable 0;

void DeleteAll ();

RECORPHUMBER TotalRecords 0
RECORDNUMBER CurrentRecord 0;

void RecordUpdate 0
void RecordDelete 0
void RecordAdd ();

void ReadFirst 0;
void ReadLast 0
void ReadNext 0
void ReadPrey 0;
void ReadRecord (RECORDNUMEER RecordNumber);

void IndexDelete (char *Field);
void IndexDelete (FIELDHANDLE FieldNumber);
void IndexAdd (char *Field, it Mode = INCSECONDARY);
void IndexAdd (FIELDHANDLE FieldNumber, mnt Mode = INCSECONDARY);

void Find (WStr Match, LPSTR FieldName, mnt Mode = SEARCHFIRST);
void Find (WStr Match, FIELDHANDLE FieldNumber. mnt Mode = SEARCHFIRST);

130

* it

'3'

1) 2sRE' OFATRAIN

5 14
U'.

IL(

I I
N P A.:.:. .. ¾ .- 9O

$

-3

a

2100

I I6

Scre~en 6: (OFire) Messaige to ohscrver di~dog Nix.

037

Screen 7: ()Ftrei Subsequent fieha ll dj.doy, txl

139X

W-

S'creen XI: i()Firv) Ti lc-on-LirctuIIth. tdi xes. Ilc;dwv iaili Nv t ihc tinivi rclenicn1 the
rcwnCft 1I 1i1C. %111 tfii Ic +) diehe I C 1,11 r I II wt the c .et 1 1c

II

141%

Sa laOuw ' o '

i sos .,l io 0w

Screen III: t()('hu(rd .L tup djiablo Nex.

Ad IFHIM

Screen 11: (Xiihiri Bo th~ t;Irlcatl Ci~i iris data~h;Lw (diialol bh ,xs.

141

Screen 12: (OChan) Target display .wtup dialog tx~x

'142

-=-

Screen 14. (K hanu Inputi nquiry diudog Nix.

U61111 Piýu n . _ __ _ _ _

a Al

Screen 1 5. i(X~hwu Input inquiry diadi! N~x wlrcrinlW 10a P(r11

14;

Screen 16: (OCILint Tairget input dLIoI± Nix.

0 Aiimuth 1623 mils
Distance 3911I meters

w]
Screen 17: Atimuthanud dist~uice distance displayv dialog ho~x.

144

CMIMI

ZIr.... ...

Glbm

Screen IS: (X'hairu (suni input dihspg Nix~.

LIST OF REFERENCES

I I Andleihh. P. K. and Gretzinger, NI. R.. Distributed Object-Oriented Datc-
Svstert% Design. Prentice-Hall, NJ. 1992.

2 I Boehm. B. W., Software Engineering Ecou~mwics, Prentice-Hall. NJ. 1981.

I 3 1 Booch, G.. Software Engineering with A4DA. The Benjamin/Cumming
Publishing Company, CA. 1986.

4 1 Booch. G., Object-Oriented Dhesign with Applications., The Benjamin/
Cummings Publishing Company, Inc., CA, 1991.

5 Chorafas, D., The Software Handbook, Petrocelli Books, NJ, 1984.

I 6 j Coad. P., and Yourdon, E., Object-Oriented Analysis. 2nd edition. Prentice
Hall. N.J., 1991.

I 7 1 Department of the Armv. FM o-20-1. Tactics. Techniques. and Procedures
]or the Field Artllehrv Cannon Batrtalion, 3 November 1989.

X Department of the Army. FM. 6-20-2, Tactics. Techniques. and Procedures
fi~r Corps Artille, r. Division Artiller., and Field Artillery Brigade
Hleadqu,1 arters. 7 Jan 1993.

I)] Department of the Army. FMI 0-.30. Tactics. Techniques. and Procedures fo•r
Observed Fire. 16 July 199 1.

I1 I) Department of the Army, FM 0-50. Tactics. Techniques. and Procedures for
the Field 4 rtillerv Cannon Battenr-, 1 May 1990).

1I 1 Department of the Arm,, FM 0-40. Field A rtilley, .4 anual Cannon Gunnery.,
8 April I9XX.

12 I Department of the Anniv, FM 21 -2o, Atap Reading and Lind Navl)gation.30
September 1997.

13 Elmasri. R. and Shamkant, B. N., Fundamentals of DatabaseSystems. The
BenjaminiiCummings Publishing Company, Inc., 19,-9.

14 1 Fichrnan. R. G. and Kemerer, C. F.. "Object-Oriented and Conventional
Analvsis and Design Methodologies", Computer, pp.22-39, October 1992.

15] Jacobson. I.. "Is Object Technology Software's Industrial Platform?", IEEE
Software. pp.24-3.I. January 1 993.

146

[16] Pittman, M., "Lessons Learned in Managing Object-Oriented Development,
IEEE Software, pp.43-53, January 1993.

[17] Porter, A., C+ + Programming for Windows, Osborne McGraw-Hill, CA,
1993.

[18] Rao, R., B., C++ and the OOP Paradigm, McGraw-Hill, Inc., NY, 1993.

[19] Roetzheim, W. H., Programming Windows with Borland C++, Ziff-Davis
Press, CA, 1992.

[20] Roetzheim, W. H., Uncharted Windows Programming, Sams Publishing, IN,
1993.

[21] Ross, D.T., Goodenough, J.B., Irvine, C.A., "Software Engineering: Process,
Principles and Goals", Computer, May 1975.

[22] Stevens, A., C++ Database Development, MIS: Press, NY, 1992.

[23 Stiles, E. J., "AFATDS- It's not a a New TACFIRE", Field Artillery, pp. 39-
41, February 1992.

[24] Stroustup, B., The C++ Programming Language, Addison-Wesley

Publishing Company, N.J., 1992.

[25] Syck, G., Object Windows How-to, Waite Group Press, CA, 1993.

[26] Thomson, D., "Interfacing Objects with Relational DBMS", Database
Programming & Design, v.6, pp.32-41, August 1993.

147

NAL DISTRIBUTION LIST

No. Copies

I. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Dudley Knox Library 2
Code 52
Naval Postgraduate School
Monterey, CA 93943-5002

3. Chairman, Code CS 2
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

4. Dr. C. Thomas Wu
Code CS/Wq 2
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

5. Dr. David K. Hsiao
Code CS/Hs 1
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

6. Kara Kuvvetleri Komutanligi 1
Kutuphanesi
Bakanliklar / ANKARA
TURKEY

7. Kara Harp Okulu I
Kutuphanesi
Dikmen / ANKARA
TURKEY

148

8. Mustafa Eser 3
Evsat Mah. Ozdilk cad. 1 1.Sok. No:6A
42700 Beysehir / KONYA
TURKEY

9. Top. Kd.Utgm. Turgay OniceI
Sukraniye mal. Yuksel sk. No:34
BURSA
TURKEY

149

